关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

光谱分析技术在肉类产品检测中的应用(一)

2020.10.26

前不久,“胶水牛排”成为食品安全热点问题,引发了公众担忧。“重组”牛排属于调理肉制品,允许添加卡拉胶、TG酶等一系列添加剂来塑形并提升口感,对人体健康没有影响,但其内部易出现微生物细菌污染,需要完全烹饪熟透后食用。尽管拼接肉并不违规,但笔者走访市场发现,不少“重组肉”在产品包装上冠以“原切西冷牛排”、“原切菲力牛排”的醒目标签出售。专家表示,这种重组加工却标“原切”的方法误导消费者,涉嫌商业欺诈,目前国内相关行业标准正在积极筹备中。在肉制品中掺杂未标示或虚假标示的肉类品种已逐渐成为一个全球性问题。

目前,许多肉类溯源和掺假鉴别技术涉及生物化学、免疫学、分子学等。如聚合酶链式反应(polymerase chainreaction,PCR)作为一种分子学方法,可在样品中特异性地鉴别出特定的DNA或RNA。然而这些方法不仅耗时、耗材,而且需要对样品进行预处理。因此,光谱分析以其快速和简单的样品预处理的特点体现出了极大的优势。近红外(near-infrared,NIR)、中红外(mid-infrared,MIR)、红外(infrared,IR)、傅立叶变换红外(Fourier-transform infrared,FTIR)、紫外可见吸收(ultravioletevisual,UV-VIS)光谱和拉曼光谱(Raman spectroscopy)均可应用于不同加工肉制品中肉类品种的检测。这些波通过被食物样品反射、透射或吸收,产生了能够反映样品性状的特定光谱。应用化学计量学对这些复杂的光谱数据进行处理,以保持特定光谱的准确性。此外,光谱分析还可用于生鲜肉制品的质量分析。

光谱分析技术在肉类产品检测中的应用

图1 肉类物种鉴定的光谱分析

光谱分析技术与肉类物种鉴定原理

1红外光谱

由不同肉类品种生产的肉制品,其水分、蛋白质和脂肪酸的组成也不同,这些不同导致了在特定波长下光谱产生差异。其中,O—H、C—H、N—H、C=O和氢键等在红外射线照射下产生振动响应,记录为红外光谱。红外光谱包含近红外(12 500~4 000 cm-1)和中红外(4 000~400 cm-1)2 个区域。O—H、C—H、N—H、C=O和氢键等在近红外区域,产生振动和谐波;而中红外光谱则能反映这些官能团的弯曲、拉伸和摇摆运动,表现出分子更多的详细信息。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,分子振动的能量与红外射线的光量子能量正好对应就会产生红外光谱。简单来说,即当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续的而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,因此振动光谱呈带状。因此,每种肉类样品都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。

在中红外区域中,4 000~1 500cm-1为官能团区,4 000~500cm-1为指纹区。在官能团区,可检测到醛类物质(2 900~2 700 cm-1)中O—H和N—H(3 700~2 500 cm-1)、C—H(3 300~2 800 cm-1)的拉伸。三建(C≡N、C≡C、C=C=C)在光谱中的特征区域为2 700~1 850 cm-1;双键(C=C、C=N、C=O)为1 950~1 450 cm-1。


推荐
热点排行
一周推荐
关闭