关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

pem的工作原理

2022.2.08

庄没有纳入电网覆盖范围。不仅如此,通往城乡的电力供应仍旧不稳定。因此,柴油发电机被大范围地应用于分散式供电。柴油发电机(图 1 左)虽然价格低廉,但普遍效率低下,同时会对周边环境和居民的健康带来潜在危害。

c8177f3e6709c93db89cdd888f3df8dcd1005467?x-bce-process%3Dimage%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_jpg

图 1. 左图:为印度的电信塔供电的柴油发电机。右图:PEM 燃料电池。

为解决这一难题,印度国家化学实验室(National Chemistry Laboratory, 简称 NCL)联合印度科学与工业研究理事会(Council of Scientific and Indus­trial Research,简称 CSIR)下属的两所实验室——中央电化学研究所(Central Electrochemical Research Institute,简称 CECRI)和国家物理实验室(National Physical Laboratory,简称 NPL),着手研究清洁、高效、可靠的发电技术为电信塔供电,并期望最终能够为建筑物提供能源。

质子交换膜燃料电池(proton ex­change membrane fuel cell,简称 PEM 燃料电池或 PEMFC,见图 1)是一种兼顾了成本和污染问题的理想解决方案。如今许多应用中都能看到 PEM 燃料电池的身影,它正逐步替代传统的电力技术。燃料电池的优势明显:碳排量小、噪音低、燃料兼容性强,与其他可再生能源解决方案具有良好的互补性,因此适用于交通运输、住宅楼、办公室以及一些工业领域。PEM 燃料电池系统的总转换效率超过 30%(柴油发电机约为 22%~25%),当使用纯氢气发电时,排放物只有水蒸气。

PEM 燃料电池的工作原理

PEM 燃料电池中包含一个膜电极组件(membrane electrode assembly,简称 MEA),由气体扩散层、电极和聚合物电解质膜构成。在 MEA 内发生电化学反应,产生电能。

在单个 PEM 燃料电池中,氢气流向组件的阳极,在阳极催化剂的作用下分解为质子和电子。电子在通过电极中的碳纳米颗粒网络传导至另一侧的阴极之前,会先输出电流,为设备提供电能。与此同时,质子穿过质子交换膜到达阴极,空气中的氧气通过 MEA 中的气体扩散层(gas diffusion layer,简称 GDL)到达阴极(图 2)。

7e3e6709c93d70cff2947972e8dcd100baa12b67?x-bce-process%3Dimage%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_jpg

图 2. PEM 燃料电池的概念图。氢气进入阳极,在阳极催化剂的活性位点上发生反应, 分解成质子和电子。电子经过有负载的外电路传导到阴极,质子穿过质子交换膜中的电解质迁移到阴极。PEM 由可传导质子但不传导电子的固体聚合物制成。图注: Recycling – 循环; Heat – 热; Fuel – 燃料; Anode – 阳极; Cathode – 阴极; O2 from Air – 空气中的氧气;Air and Water Vapor – 空气和水蒸汽;Hydrogen – 氢;Oxygen – 氧;Proton –质子;Electron – 电子;Gas Diffusion Layer – 气体扩散层;Catalyst – 催化剂; Proton Exchange Membrane – 质子交换膜

在阴极催化剂的活性位点上,质子与氧气及电子反应生成水;副产物只有水和热量。多个单体电池相互串联,便组成了 PEM 燃料电池堆(图 3)。

a686c9177f3e67090e6e96802bc79f3df8dc5567?x-bce-process%3Dimage%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_jpg

图 3. PEM 燃料电池堆的示例,它包含多层重复单元。图注:ElectroPhen Biopolar Plate – 双极板;Membrane Electrode Assembly – 膜电极组件;Gas Flow Channels – 气体流道;Repeat Unit – 重复单元

燃料电池的输出功率和效率取决于多种因素,其中包括:阳极和阴极活性层的催化活性、电极将气体扩散电极中的液态水输送至外部的能力、碳网络的电导率和孔隙率、反应气体流向催化剂的传输过程、PEM 的质子电导率以及双极板的电导率。

寻找最高效的配置

为印度的电信塔选择 PEM 燃料电池的关键在于找到转化效率最高的最优结构。众所周知,对一个设计因素进行优化时,可能会降低另一个因素的效率。举例来说,增加气体扩散层的孔隙率更有利于氢气和空气自由地进入、水分自由地离开,但可能会降低电导率。

由 NCL 项目的首席科学家 Ashish Lele 博士领衔的专业团队针对不同的配置进行了模拟和分析,力求为印度电信塔使用的 PEM 燃料电池寻找最优性能组合。他表示:“我们希望进一步了解碳电极中发生的反应,研究电极中的反应气体和质子的传输过程如何影响总反应速率。我们的最终目标是了解各类不同参数对 PEM 燃料电池整体性能的影响,这些参数包括工作条件、流场的几何形状和 MEA 结构等。”


推荐
热点排行
一周推荐
关闭