关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

物质磁性的分类和特性描述

2022.11.08

描述物体磁性强弱程度的一个重要物理量是磁化强度矢量M,即单位体积内各个磁畴磁矩的矢量和。磁化强度M与磁场强度H的关系表示为:

M =χH式中 χ 为物体的磁化率。

按照物质磁化率 χ 的大小和符号、物质磁性来源和磁结构特性,物质磁性可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性五大类,下面分别简述五大类磁性的基本特点。

① 抗磁性

物质由原子和分子组成。自由原子的磁矩有三个主要来源:一是电子的自旋,二是电子绕原子核旋转的轨道角动量,三是电子在外加磁场中旋转所感生的轨道磁矩变化。第三个来源是产生抗磁性的原因,前两个来源不同程度上对顺磁性、铁磁性、反铁磁性和亚铁磁性有所贡献。可以看出,所有物质都存在第三个来源,因此抗磁性在所有物质中都存在。由于抗磁性极其微弱,故在具有其他磁性的物质中抗磁性常常被掩盖。

抗磁性亦称为逆磁性。电子在外磁场中运动所感生的磁矩,其方向与外磁场相反。

② 顺磁性

物质具有顺磁性的必要条件是组成物质的原子、分子或离子具有固有磁矩。但这些原子(分子或离子)磁矩之间相互作用十分微弱,在热运动的影响下,基本上处于无序排列状态;温度越高,排列越无序。物质磁化以后,原子(分子或离子)磁矩就有沿外磁场方向排列的趋势,外磁场越大,排列越趋整齐。由此可见,顺磁性物质的磁化强度M 与外磁场 H ,方向相同,不过仅显示微弱的磁性。

③ 铁磁性

铁磁性物质原子或离子的电子之间存在交换作用,这种相互作用十分强大,与其等效的“磁场”称为分子场。如此大的分子场足以克服热运动的影响,使原子(离子)磁矩相互平行排列(交换积分 A > 0)。随着温度的升高,热运动渐趋剧烈,磁矩平行排列趋势逐渐变弱,

但仅是量变过程。当温度高于居里温度即CT >T时,热运动能大于交换作用能,从而导致原子(离子)磁矩混乱排列,此时铁磁性转变为顺磁性。

铁磁性物质是一类重要的磁性材料,其中有一些也是优良的磁光材料。

④ 反铁磁性

绝大多数反铁磁性物质,如 MnO 和 NiO 等都是导电性很差的化合物,其阳离子通常为过渡族金属离子,近邻配位离子为阴离子。金属离子之间距离较大,它们的电子壳层几乎不存在交叠。因此,反铁磁性物质的原子或离子磁矩之间存在间接交换作用,而不是如铁磁性物质那样的直接交换作用。这种相互作用十分强,但是反映间接交换作用大小的量——间接交换积分A <0间接,导致相邻金属离子磁矩之间相互反平行。相同晶格位置上的平行离子磁矩组成一个压晶格,称为磁亚晶格,反铁磁性物质中一般存在两个或两个以上磁亚晶格。

反铁磁性物质的相邻磁亚晶格的磁矩之间相互反平行,因此对外并不显示磁性。在外磁场作用下,也只能出现微弱的磁性。由反铁磁性转变为顺磁性的磁相变点NT 称为奈尔温度。在

NT 处,χ最大。

⑤ 亚铁磁性

与反铁磁性物质一样,亚铁磁性物质中具有两个或两个以上磁亚晶格。所不同的是,相邻磁亚晶格的原子(离子)磁矩方向相反,但大小不等,从而存在未抵消的磁矩,因此亚铁磁性物质中存在相当强的磁性;有许多特性,如技术磁化过程的不少特征与铁磁性物质十分相似。 亚铁磁性物质的磁化率 χ > 0,且很大。除钡铁氧体等永磁材料外,亚铁磁性材料大多在高频区域应用,对于χ特性的要求不同于低频区域,有时对χ大小的要求显得并不重要。亚铁磁性物质的磁相变点称为奈尔点。

⑥ 超顺磁性

随着纳米材料的诞生和发展,一种新型的磁性物质出现了,称为“超顺磁性材料”。如果磁性材料是一单畴颗粒的集合体,对于每一个颗粒而言,由于磁性原子或离子之间的交换作用很强,磁矩之间将平行取向,而且磁矩取向在由磁晶各向异性所决定的易磁化方向上,但是颗粒与颗粒之间由于易磁化方向不同,磁矩的取向也就不同。


推荐
关闭