关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

气体分离膜大致分类

2021.11.22
  1. “单一”溶解-扩散膜
      这类膜传质过程为:上游气相中气体分子首先溶解于膜,然后扩散过膜,最后在下游气相中解吸。这类膜可进一步分为3种:聚合物溶解-扩散膜、分子筛和表面选择流膜。
      聚合物溶解-扩散膜是商业应用膜的主要材料,多为玻璃态聚合物与像胶态聚合物。玻璃态聚合物优先透过小的非可凝性气体,如H2、N2和CH4等;像胶态聚合物优先渗透透大的可凝性气体,如丙烷和丁烷。
      聚合物溶解-扩散膜较其他膜材料更具经济性,是气体分离用膜的主要材料,其主要问题是高温、高压及存在高吸附性组分时,稳定性会受到影响。
      分子筛膜材料是另一种选择,主要借助分子大小差异实现分离。这类膜具有非常小的、可排斥某些分子的超微孔,而允许另一些分子通过。实验室研究表明这类膜的渗透性能极具吸引力。然而,这类膜加工困难,易碎,制造费用昂贵。
      表面选择流膜 有利于较大渗透物透过膜,而截留较小的组分。这类分离可通过表面选择流膜实现。这类膜具有纳米孔隙,在孔隙表面上对吸附能力较强的组分选择吸附,然后吸附组分通过孔表面扩散。由于吸附分子在膜孔中不产生空隙,从而对小的非吸附组分的传递产生阻力。最近,研究人员正在使用表面选择流机理的膜组件进行中间放大试验。

  2. “复杂”溶解-扩散膜
      这类膜类似于“单一”溶解-扩散膜,但分离机理较“单一”溶解-扩散膜复杂。可以进一步分为2类:促进传递膜和氢分离用钯(合金)膜。
      促进传递膜 优点是:在低的浓度推动力下即可实现高的渗透性能,选择性高;缺点是稳定性差,至今尚无工业化应用。
      钯基膜 其对氢具有很高的选择性。氢分子在钯膜表面吸附解离,形成具有部分共价键的钯杂化物;然后原子氢在金属内部扩散过膜,并在膜下游重新结合为氢分子。由于纯钯膜经多个氢吸附和脱附循环后会发生氢脆,常用钯合金代替。这类膜的典型用途是作为膜的反应器,结合某些反应在一个单元中完成氢的产生和分离。

  3. 离子导体膜
      由离子导体材料制成,其中最重要的是固体氧化物膜和质子交换膜。
      固体氧化物膜 可分为2类:混合离子电子导体(MIEC)和固体氧化物。MIEC能够传导氧离子和电子,用于需要氧或氧离子的非电化学过程。固体氧化物则仅传导氧离子,不传导电子,这种情况下,电子通过外电路传导,产生电能。氧的传递过程包括2个气-膜表面的电化学反应和氧离子透过固体氧化物膜等3个步骤。与聚合物膜相比,这类膜具有高的选择性和通量,但需要高温(700℃)下操作,大规模应用前需要解决高温密封,以及膜对温度的敏感性等问题。
      质子交换膜 从某种意义上说是固体氧化物的类似物,也是只传导质子,不传导电子。膜材料可以为聚合物或无机物,最常用的为Nafion(噶种磺化聚合物)。这类膜已在燃料电池中获得应用。


推荐
关闭