关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

人工光合作用的里程碑:人造“叶绿体”的实现

2021.6.02

  研究背景

  绿色植物的叶绿体是发生光反应和暗反应的重要场所。光反应将光能转化为化学能,产生了两种重要的能量载体,即三磷酸腺苷和还原态磷酸二核苷酸烟酰胺(NADPH)。而暗反应则利用这两种高能分子驱动CO2分子的捕获,进而合成生物质分子。

294023_202106020936091.jpg294023_202106020936221.jpg

  总之,叶绿体既是光能转化为化学能的场所,又是CO2固定及转化的场所。这种一体化的结构,值得人工光合作用领域的研究者们模仿和借鉴。  

  成果简介

  近日,德国马克斯-普朗克陆地微生物研究所的Tobias J. Erb和法国波尔多大学的Jean-Christophe Baret(共同通讯作者)等利用微流体体系模拟植物的叶绿体,即利用菠菜的类囊体薄膜实现光反应,并驱动合成酶循环过程,在细胞尺寸的油包水液滴中实现了CO2固定和光合成反应。

  这些与叶绿体相仿的液滴在较小的空间内把天然组分和合成组分结合起来,通过进一步功能化,能够为复杂的生物合成反应提供场所。

  在光照下,液滴中的酶或酶级联放大系统被光能转化得到的化学能所驱动。研究者从多个方面实时研究了该过程的催化性能。

  通过NADPH荧光实时监测新陈代谢的反应活性,该研究发现:通过改变微流体液滴的成分,能调控其在光合成反应中的性质。此外,光照也是一种重要的外界因变量。

  该工作通过构筑巴豆酰基-辅酶A (CoA)/乙基丙二酰-CoA/羟基丁酸酰基-CoA (CETCH)的循环,充分证明将天然组分和人造组分结合起来形成类似于叶绿体的复合物,能够实现CO2的捕获和转化,使碳循环的整合向前迈进了重要的一步。

  该工作以“Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts”为标题于2020年5月8日发表在国际顶刊Science上。

  图文导读

294023_202106020936481.jpg

  图1. 光催化辅酶产生

294023_202106020936541.jpg

  图2.光驱动CO2的连续固定,并催化CO2转化为有机酸

294023_202106020937021.jpg

  图3. 光驱动微流体液滴中的酶反应

294023_202106020937061.jpg

  图4. 用版本为7.0的CETCH监测光驱动CO2的连续固定并转化为有机酸的过程


推荐
热点排行
一周推荐
关闭