关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

从有源相控阵天线走向天线阵列微系统 (五)

2020.10.12

4.4、封装与热管理技术

 

极大功能化、微纳尺度、多尺度结构、多类型材料 , 以及有源和无源嵌入式厚薄膜元件是实现天线阵列微系统的重要特征 . 随着天线阵列微系统向小型化、高性能和高密度集成的发展 , 多功能器件( 例如 GaN, SoC 芯片 ) 的功耗不断增大 , 芯片散热已经从小规模集成电路的几百毫瓦发展到上百瓦 .这些将导致功率芯片及无源元件等成为非均匀分布的热源 , 提升了热流密度 . 封装的目的是为天线阵列微系统提供散热通道 , 还为内部芯片、元件和基板提供机械支撑、密封保护和内外信号互连等 . 热管理的目的是通过多种方法导出热量 , 使封装体内温度维持在允许的范围内 , 避免天线阵列微系统内部温度的逐渐升高 , 超过限定值 , 引起键合材料的蠕变、掺杂物的扩散、器件应力上升、结构破坏等现象 , 导致天线阵列微系统停止工作或丧失其功能 。

 

4.4.1、多本征参数适配材料技术

 

多本征参数适配材料技术重点研究围绕基板、布线、框架、互连导体、层间介质、密封材料和封装外壳等功能材料 , 针对金属、陶瓷、聚合物基复合材料、金属基复合材料、陶瓷基复合材料以及多种增强体和材料本体结合 , 制备出的复合功能材料 , 例如 , 铝硅、铝碳化硅复合材料 , 满足天线阵列微系统封装轻量化、小型化、低损耗、高导热等要求 。

 

针对天线阵列微系统封装小型化和多功能化的需求 , 新型基板材料、导体浆料、基板制备技术、膜集成技术的搭配和融合技术 , 是实现高密度异质多层基板技术的基础 . 例如 , 中温瓷填孔钨铜浆料技术可实现高速 DSP 信号传输 ; 单芯片扇出技术可实现高密度微小间距芯片与陶瓷基板的互连 ; 氮化铝填铜柱垂直互连技术可实现大电流传输 , 同时满足大功率器件散热需求 . 随着宽禁带 (WBG) 半导体技术大规模商业化的来临 , 研发新的封装材料和技术迫在眉睫。

 

4.4.2、嵌入式热管理技术

 

基于微纳技术的冷却器在常规微系统热管理中发挥了日益重要的关键作用 , 目前电子系统的散热已经由传统的自然对流、金属导热和强制风冷散热发展到液冷和热管散热 , 液冷散热方式中的微流道散热是天线阵列微系统的有效和方便的散热方式 . 例如 , 利用 LTCC 技术制作的嵌入式微流道液冷基板 , 具有体积小、散热面积大、功率消耗低、批量制作成本低等特点 .流道冷却器吸收芯片上的热量 , 通过液体循环将热量传给外界 , 达到散热的目 . LTCC 内嵌 3D 微流道系统分为多排直槽型、蜿蜒型和分形流道 . 一种典型的 3D 微流道结构示意图如图 11 所示 . 利用 LTCC 单张生瓷片可分别加工的优势 , 用冲孔工艺在单张 LTCC 生瓷片上制作二维微流道 , 将所有生瓷片叠片、热压、烧结 , 形成完整的 3D 微流道 。

 

15

 

图 11 (网络版彩图) LTCC 内嵌 3D 微流道结构示意图

4.4.3、陶瓷金属一体化封装技术

陶瓷金属一体化封装技术 (integral substrate package, ISP) 是将多层基板作为封装的载体 , 与封装外壳腔壁相连 , 多层布线基板构成外壳整体的一部分 , 在基板上直接引出封装的外引线 , 是一种气密性封装 , 不需要再用全金属外壳封装 . 根据环境、结构、尺寸等边界条件 , 开展温度场分布及不同条件对温度场的影响、热阻与散热路径、机械承载与结构应力、电磁场等微结构分析与优化 . 在提高了封装密度 , 降低了封装体厚度 , 减轻了重量的同时 , 一体化封装技术也有益于微波信号传输和热管理 。例如 , 一种典型基于 LTCC 工艺的三维异构混合集成是将两个金属 / 陶瓷模块通过一块金属转接板相互连接在一起。

 

5、总结

 

技术创新在一定程度上取决于预测技术方向及它在未来的应用发展方向 , 并敢于相信那种直觉 .后摩尔时代 , 天线阵列微系统的研究和发展 , 需要解决两个非常重要的核心问题 : 一是发展摩尔定律 ,实现芯片性能进一步提升 , 三维异质集成能够超越摩尔定律 ; 二是实现后摩尔定律追求的多功能三维异构集成 , 实现系统性能和能力的提升 . 未来的天线阵列微系统将在体积与重量、性能、效率 , 以及智能化水平方面取得巨大进步 , 必将大大推动下一代更高性能微波成像雷达问世 。

 

本文针对星载及机载平台需求,设计了一种L波段低剖面、轻量化、维修性高的相控阵天线单元,实现了E面扫描±60°,H面扫描±20°的宽角扫描,效率高于83%,具有良好的工程可实现性。

 

来源:《中国科学: 信息科学》

作者:鲁加国 , 王岩

 

参考文献

 

1 Lu J G. Design Technology of Synthetic Aperture Radar. Hoboken: Wiley, 2019

2 Wang W, Lu J G, Zhang H T, et al. A brief review of SAR antenna development in China. In: Proceedings of IEEE International Conference on Radar, Guangzhou, 2016

3 Lu J G. Design Technology of Synthetic Aperture Radar. Beijing: National Defense Industry Press, 2017 [鲁加国. 合成孔径雷达设计技术. 北京: 国防工业出版社, 2017]

4 Lu J G, Wang W, Lu X P, et al. Three matching problems in waveguide slot antenna research. Radar Sci Technol,2012, 18: 115–123 [鲁加国, 汪伟, 卢晓鹏, 等. 波导缝隙天线研究中的 “三匹配” 问题. 雷达科学与技术, 2020, 18:115–123]

5 Lu J G. The technique challenges and realization of space-borne digital array SAR. In: Proceedings of the 5th AsiaPacific Conference on Synthetic Aperture Radar (APSAR), 2015

6 Zhang Y P, Sun M, Guo L H. On-chip antennas for 60-GHz radios in silicon technology. IEEE Trans Electron Device,2005, 52: 1664–1668

7 Kang K, Lin F, Pham D D, et al. A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS. IEEE JSolid-State Circ, 2010, 45: 1720–1731

8 Ojefors E, Sonmez E, Chartier S, et al. Monolithic integration of a folded dipole antenna with a 24-GHz receiver in SiGe HBT technology. IEEE Trans Microw Theory Tech, 2007, 55: 1467–1475

9 Ojefors E, Kratz H, Grenier K, et al. Micromachined loop antennas on low resistivity silicon substrates. IEEE Trans Antenna Propag, 2006, 54: 3593–3601

10 Babakhani A, Guan X, Komijani A, et al. A 77-GHz phased-array transceiver with on-chip antennas in silicon: receiver and antennas. IEEE J Solid-State Circ, 2006, 41: 2795–2806

11 Zhang Y P. Integration of microstrip antenna on ceramic ball grid array package. Electron Lett, 2002, 38: 207–208

12 Chang K F, Li R, Jin C, et al. 77-GHz automotive radar sensor system with antenna integrated package. IEEE Trans Compon Packag Manufact Technol, 2014, 4: 352–359

13 Shen T M, Kao T Y J, Huang T Y, et al. Antenna design of 60-GHz micro-radar system-in-package for noncontact vital sign detection. Antenna Wirel Propag Lett, 2012, 11: 1702–1705

14 Pfeiffer U R, Grzyb J, Liu D X, et al. A chip-scale packaging technology for 60-GHz wireless chipsets. IEEE Trans Microw Theory Tech, 2006, 54: 3387–3397

15 Grzyb J, Liu D X, Gaucher B. Packaging effects of a broadband 60 GHz cavity-backed folded dipole superstrate antenna. In: Proceedings of Antennas and Propagation Society International Symposium, 2007. 4365–4368

16 Beer S, Gulan H, Rusch C, et al. Coplanar 122-GHz antenna array with air cavity reflector for integration in plastic packages. Antenna Wirel Propag Lett, 2012, 11: 160–163

17 Zevallos Luna J A, Dussopt L, Siligaris A. Hybrid on-chip/in-package integrated antennas for millimeter-wave shortrange communications. IEEE Trans Antenna Propag, 2013, 61: 5377–5384

18 Tong Z Q, Fischer A, Stelzer A, et al. Radiation performance enhancement of E-band antenna in package. IEEE Trans Compon Packag Manufact Technol, 2013, 3: 1953–1959

19 Kuo J L, Lu Y F, Huang T Y, et al. 60-GHz four-element phased-array transmit/receive system-in-package using phase compensation techniques in 65-nm flip-chip CMOS process. IEEE Trans Microw Theory Tech, 2012, 60: 743–756

20 Javid B, Heydari P. Design and implementation of a CMOS 4-Bit 12-GS/s data acquisition system-on-chip. IEEE Trans VLSI Syst, 2014, 22: 2164–2175

21 Fischer A, Tong Z, Hamidipour A, et al. 77-GHz multi-channel radar transceiver with antenna in package. IEEE Trans Antenna Propag, 2014, 62: 1386–1394

22 Hasch J, Topak E, Schnabel R, et al. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans Microw Theory Tech, 2012, 60: 845–860

23 Gupta K C, Hall P S. Analysis and Design of Integrated Circuit-Antenna Modules. New York: Wiley, 2000

24 Baggen L, Holzwarth S, Boettcher M, et al. Advances in phased array technology. In: Proceedings of the 3rd European Radar Conference, 2006. 87–91

25 Baggen L, B¨ottcher M, Otto S, et al. Phased array technology by IMST. J IEEE, 2012, 4: 21–28

26 Lu J G, Wu M Q. Active phased array antenna based on DDS. In: Proceedings of IEEE International Symposium on Phased Array Systems and Technology, 2003. 511–516

27 Wang Z Y. Microsystem Design and Fabrication. Beijing: Tsinghua University Press, 2008 [王喆垚. 微系统设计与制造. 北京: 清华大学出版社, 2008]

28 Zhang W, Zhang D C, Wang Y Y. MEMS overview and trend. Micro Nano Electron Technol, 2002, 1: 22–27 [张威,张大成, 王阳元. MEMS 概况及发展趋势. 微纳电子技术, 2002, 1: 22–27]

29 The Research Center for Development and Strategy of CETC. Annual Development Report of World Military Electronics 2018. Beijing: Electronics Industry Publishing House, 2019. 1208 [中国电子科技集团公司发展战略研究中心. 世界军事电子年度发展报告 2018. 北京: 电子工业出版社, 2019. 1208]

30 Moore G E. Cramming more components onto integrated circuits. Electronics, 1965, 38: 3

31 Lau J H, Li M, Li Q Q, et al. Fan-out wafer-level packaging for heterogeneous integration. IEEE Trans Compon Packag Manufact Technol, 2018, 8: 1544–1560

32 Laroche J, Anderson K. Heterogeneous integration for RF & mixed signal system. In: Proceedings of Electronics Resurgence Initiative Summit, 2019. 126–151

33 Santagata F, Sun F W. System in package (SiP) technology: fundamental, design and applications. Microelectron Int,2018, 4: 231–243

34 Su Y F, Chiang K N, Liang S Y. Design and reliability assessment of novel 3D-IC packaging. J mech, 2017, 33: 193–203

35 Lau J H, Li M, Li Q M, et al. Design, materials, process, fabrication, and reliability of fan-out wafer-level packaging.IEEE Trans Compon Packag Manufact Technol, 2018, 8: 991–1002

36 Merkle T, Gotzen R, Choi J Y, et al. Polymer multichip module process using 3-D printing technologies for D-band applications. IEEE Trans Microw Theory Tech, 2015, 63: 481–493

37 Yang B C, Zhang J G. Multichip Module (MCM) Technology and Application. Chengdu: Electronics Science and Technology Publishing House, 2001 [杨邦朝, 张经国. 多芯片组件 (MCM) 技术及其应用. 成都: 电子科技大学出版社, 2001]

38 Keim T. Power electronics packaging rises to new challenges. IEEE Power Electron Mag, 2019, 4: 12–14

39 Mu F Q, Zhang Y F. Research on three dimensional microfludic system technology. J Chinese Electron Sci Res Acad,2011, 6: 20–23 [沐方清, 张杨飞. 三维微流道系统技术研究. 中国电子科学研究院学报, 2011, 6: 20–23]

40 Di Carlofelice A, de Paulis F, Fina A, et al. Compact and reliable T/R module prototype for advanced space active electronically steerable antenna in 3-D LTCC technology. IEEE Trans Microw Theory Tech, 2018, 66: 2746–2756


推荐
关闭