关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

微流控的发展历程及前瞻

2021.5.31

  从Manz和Widmer等人采用芯片实现了此前一直在毛细管内完成的电泳分离,于1990年首次提出微型全分析系统(Miniaturized Total Analysis System,(μTAS)的概念,到1995年首家从事微流控芯片技术的Caliper Life Sciences公司成立,90年代中期,美国国防部提出对士兵个体生化自检装备的手提化需求催生了世界范围内微流控芯片的研究;在整个90年代,微流控芯片更多的被认为是一种分析化学平台,因此,原则上,微流控芯片作为一种“微全分析”技术平台可以应用于各个分析领域,如生化医疗诊断、食品和商品检验、环境监测、刑事科学、军事科学和航天科学等重要应用领域,其中生物医学分析是热点。

  2000年左右G. Whitesides等关于PDMS软刻蚀的方法在Electrophoresis和Analytical Chemistry上发表,再到Quake等以“微流控芯片大规模集成”为题在Science上发表文章,2001年,“Lab on a Chip”杂志创刊,它很快成为本领域的一种主流刊物,引领世界范围微流控芯片研究的深入开展。接下来的2003年,微流控技术被Forbes杂志评为影响人类未来15件最重要的发明之一。Business也在2004年把微流控技术誉为“改变未来的七种技术之一”。2006年7月Nature杂志发表了一期题为“芯片实验室”专辑,从不同角度阐述了芯片实验室的研究历史、现状和应用前景,并在编辑部的社评中指出:芯片实验室可能成为“这一世纪的技术”。至此,芯片实验室所显示的战略性意义,已在更高层面和更大范围内被学术和产业界所认同。

  这些里程碑式的工作使学术界和产业界看到了微流控芯片超越“微全分析系统”的概念而发展成为一种重大的科学技术的潜在能力。例如,利用微流控芯片作为一种微反应器,通过在微流控芯片上开展组合化学反应或结合液滴技术,有望用于药物合成与筛选,或纳米粒子、微球、晶体等的高通量、大规模制备,甚至形成一种“芯片上的化工厂或制药厂”;还有利用微流控芯片的集成功能来制作器官芯片,用于仿真人体器官中的最小功能单元,实现药物或化学物质在非活体环境(in vitro)中,研究活体环境(in vivo)的交互反应,是一种用于了解、评估疾病、药物、化学物质与食物等对人类影响的3D芯片设备。而“器官芯片”这一技术在2016年的达沃斯论坛上入选了年度十大新兴技术之一,被誉为与新燃料电池和无人驾驶汽车齐名的新兴技术。同时微流控芯片以其强大的应用范围(生物医学、药物筛选、运动竞技、国防科技、司法鉴定、食品安全、环境监测)成为了是当代极为重要的新兴科学技术平台和国家层面产业转型的潜在战略领域。在2016年7月国家国务院印发的《“十三五”国家科技创新规划》中李克强总理明确提出“体外诊断产品要突破微流控芯片、单分子检测等关键技术,开发全自动核酸检测系统等重大产品,研发一批重大疾病早期诊断和精确治疗诊断试剂以及适合基层医疗机构的高精度诊断产品”。而来自中国大连化物所的林炳承研究院于2006年7月《微流控芯片实验室》序中也说道“时至今日,微流控芯片的研究早已超出了学术界的范畴,它很可能成为信息科学和生命科学之间沟通的桥梁,在未来五年、十年或者十五年中发展成一种举足轻重的产业,大幅度改善人类生存的质量,影响人类的未来”。

  更加鼓舞人心的是,在近期,FDA与Emulate, Inc. 签订了题为“可将Organs-on-Chips技术作为毒理学测试平台,用于对影响人类的健康和安全的研究”的协议,这意味着,在美国,器官芯片对新药筛选的结果的得到了FDA的承认,也就是说在药物筛选阶段可以直接跳过活体动物这个环节,可直接在器官芯片上进行,这一协议也充分说明了微流控芯片以后对世界的重大影响和战略性意义。

推荐
关闭