关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

生物细胞学的形态结构的研究

2022.9.04

  从19世纪中期到20世纪初,关于细胞结构尤其是细胞核的研究,有了长足的进展。

  德国植物学家E.A.施特拉斯布格1875年首先叙述了植物细胞中的着色物体而且断定同种植物各自有一定数目的着色物体;1885年德国学者C.拉布尔提出着色物体数目恒定的规律。1880年巴拉涅茨基描述了着色物体的螺旋状结构,翌年普菲茨纳发现了染色粒,直到1888年W.瓦尔代尔才把核中的着色物体正式命名为染色体。德国学者H.亨金 1891年在昆虫的精细胞中观察到X染色体,1902年W.L.史蒂文斯、E.B.威尔逊等发现了Y染色体。

  细胞分裂现象,在那时已经受到重视,并进行了仔细分析。德国植物学家W.霍夫迈斯特1867年在植物,A.施奈德1873年在动物,分别比较详细地叙述了间接分裂;德国细胞学家W.弗勒明1882年在发现了染色体的纵分裂之后提出了有丝分裂这一名称以代替间接分裂,E.霍伊泽尔描述了在间接分裂时的染色体分布;在他之后,E.A.施特拉斯布格把有丝分裂划分为直到现在还通用的前期、中期、后期、末期;他和其他学者还在植物中观察到减数分裂,经过进一步研究终于区别出单倍体和双倍体染色体数目。

  关于细胞质的研究, 远不如细胞核那样透彻。 虽然德国生物学家O.赫特维希1875年就发现了中心体,但对于它在有丝分裂时的演变是通过以后对有丝分裂的研究才得到比较详细的了解。至于高尔基发现的他称之为Apparato reticulare interno(后称高尔基器) 的构造(1895),在电子显微镜问世之前对于它是否存在,一直有争议。因为这种构造需在细胞经过一定的固定剂固定,再用银或锇酸染色之后才能显示,有人就认为是人工假象;但是观察活细胞或者用活体染色或冰冻切片,在分泌细胞的一定位置又都肯定能够看到这种结构。关于线粒体,自从1897年被C.本达发现并命名后,对于它的存在意见比较一致。在一些细胞中经一定的固定剂固定后,可被一定的染料染色,也可在活体中观察到。但是在光学显微镜下其形状各式各样,或是线状或是颗粒状或是一串颗粒;至于是否存在于动物的各种细胞内或一切生物体的细胞内,那时还没有定论。

  关于细胞质自身了解得更差。虽然有过各种理论,但都未能反映真实情况。例如C.弗罗曼1865年认为其中含有纤维状物质交织成框架或网状。W.弗勒明1882年错误地把所看到的线粒体、纺锤丝以及固定样品中的其他纤维状构造推而广之,认为细胞质是由埋藏在基质中的这些丝状成分构成的。德国组织学家R.阿尔特曼1886年甚至认为一定的小颗粒是最简单的、活的、“细胞的基本有机体”,由于它们的特殊方式的集聚而构成细胞;这可能也是由于误认了线粒体以及分泌和贮藏颗粒。比较容易被人接受的是1888年德国动物学家O.比奇利的蜂窝或泡沫学说:细胞质是由较粘的物质(透明质hyalopla-sm)形成的精细的蜂窝状构造构成的,其中充满另一种称之为细胞液(enchylema)的物质。 这个学说在一定程度上符合实际情况,因为比奇利不是根据对固定的标本观查,而是根据对原生动物的活体观察提出的。原生动物太阳虫的细胞质确实是泡沫状的──关于原生动物是否单细胞的问题争论了差不多半个世纪,直到1875年经比奇利研究纤毛虫后才予以肯定──因此泡沫状学说维持的时间最长。

  关于细胞质的结构还应追述两种情况。1899年加尼耶在研究各类腺体细胞时发现细胞质中含有嗜碱性的呈现动态变化的丝状或棒状的结构,认为这不是细胞质的内含物,而是细胞质的组成部分,因而命名为动质,并且对此做了详细的叙述。这就是半个世纪之后在电子显微镜下证实是真实的细胞质结构,即内质网,只是当时未得到应有的重视。1902年韦拉特详细描述了不同动物横纹肌肉的肌质网,也是长期被遗忘,直到应用电子显微镜后,在1960年才充分评价了他的观察的精确性。

  对细胞质结构的认识落后于对细胞核或染色体的认识,这种情况长期未得到改善。尤其是20世纪早期之后,随着细胞遗传学研究分离、重组、连锁、交换等遗传现象的染色体基础,对染色体的了解更深入了。H.鲍尔1933年在蚊子的马尔皮基氏管细胞中发现了多线染色体。1934年T.S.佩因特在果蝇,R.L.金和H.W.比姆斯在摇蚊中,也发现这种构造。多线染色体是一种存在于双翅目幼虫的某些腺体细胞中的巨大染色体,在果蝇中其长度大约是正常染色体的100倍,每条染色体由许多条(可多到400条)染色纤维组成,在整条染色体上显示染色深的带区和染色浅的间带区。它的形成是由于核内有丝分裂(只有染色体分裂而核不分裂),因而每条多线染色体实际上是由许多染色体形成的。这种染色体体积庞大,有利于对染色体的精细构造进行分析。此外,还可根据多线染色体上的胀泡判断其功能活动的情况。但是与此同时,关于细胞质,除去结合着细胞生理对它的某些生理功能有所了解之外,对结构的认识并没有多大进展。这种情况直至20世纪40年代后,电子显微镜得到广泛使用,标本的包埋、切片一套技术逐渐完善,才有了很大改变。通过大量的工作,不仅弄清楚了从前在光学显微镜下可以看到而又看不清,或者尚有争议的细胞器,如线粒体、高尔基器、中心体、内质网、纤毛、鞭毛等构造,而且还发现了许多从前未曾看到过的构造如溶酶体、过氧化酶体、核糖体、构成细胞骨架的各种纤维,以及用高压电镜观察到的由 1~10埃粗细的纤维组成的支撑着各种细胞器的微梁系统,特别是看到了细胞的各种膜。以往在光学显微镜下从未看到过细胞膜或核膜,只是根据界面或生理情况判断它们的存在,而在电镜下断定了所有的膜都是 75~100埃厚的三层结构(称之为单位膜)。不仅如此,一个细胞的各部分膜都是相连的,质膜与内质网,内质网与高尔基器或核膜相连。核膜是双层的,由内外两层膜构成,并且具有有一定结构的核膜孔,通过它,细胞质的物质和细胞核的物质得以交流。在质膜上还发现了细胞间连结:桥粒、紧密连接和间隙连接等。这些结构与细胞间的结合或细胞间的物质交流有关;利用冰冻蚀刻技术,可以更好地观察它们。

  在20~30年的时间里,对于细胞质以及细胞器的形态有了相当深入的认识。当然,在广泛应用电子显微镜的年代里,光学显微镜仍是不可缺少的有力工具。如完整的细胞骨架,就是利用荧光标记免疫抗体在光学显微镜下观察到的。

  在此期间,对细胞核的研究进展不太大。虽然关于核仁的结构有了精确的叙述,但是关于染色质,用电子显微镜观察超薄切片只能看到一些着色的点子──应是染色质被切断的断面,看不到完整的染色质结构。用铺展的方法使染色质散开,也只能看到粗细不同的纤维。直到70年代,才在电子显微镜下观察到核小体;此后不久,结合生化提取,观察到分裂中期的染色体是以所谓的支架蛋白为核心,DNA纤维由此环状地向四周伸展出去。但是染色质怎样凝集成染色体,尽管有不同的设想──例如有人认为是由于染色纤维一次又一次地螺旋化(所谓的超螺旋),但是在多大程度上符合实际情况,还很难判断。

推荐
热点排行
一周推荐
关闭