关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

液质联用质谱发展史

2018.11.14

液质联用质谱发展史

早在19世纪末,E.Goldstein在低压放电实验中观察到正电荷粒子,随后W.Wein发现正电荷粒子束在磁场中发生偏转,这些观察结果为质谱的诞生提供了准备。

image.png

世界上第一台质谱仪于1912年由英国物理学家Joseph John Thomson(1906年诺贝尔物理学奖获得者、英国剑桥大学教授)研制成功;到20世纪20年代,质谱逐渐成为一种分析手段,被化学家采用;从40年代开始,质谱广泛用于有机物质分析;1966年,M.S.B,Munson和F.H. Field报道了化学电离源(Chemical Ionization,CI),质谱第一次可以检测热不稳定的生物分子;到了80年代左右,随着快原子轰击(FAB)、电喷雾(ESI)和基质辅助激光解析(MALDI)等新“软电离”技术的出现,质谱能用于分析高极性、难挥发和热不稳定样品后,生物质谱飞速发展,已成为现代科学前沿的热点之一。由于具有迅速、灵敏、准确的优点,并能进行蛋白质序列分析和翻译后修饰分析,生物质谱已经无可争议地成为蛋白质组学中分析与鉴定肽和蛋白质的最重要的手段。

质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。如用质谱法作为气相色谱(GC)的检测器已成为一项标准化GC 技术被广泛使用。由于GC-MS 不能分离不稳定和不挥发性物质,所以发展了液相色谱(LC)与质谱法的联用技术。LC-MS可以同时检测糖肽的位置并且提供结构信息。1987年首次报道了毛细管电泳(CE)与质谱的联用技术。CE-MS 在一次分析中可以同时得到迁移时间、分子量和碎片信息,因此它是LC-MS的补充。

在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。质谱的发展对基础科学研究、国防、航天以及其它工业、民用等诸多领域均有重要意义。


推荐
关闭