关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

冷冻电镜在材料科学中崭露头角

2018.7.07

冷冻电镜在材料科学中崭露头角


小编没有查到在崔屹教授之前将冷冻电镜技术应用到材料科学领域的报道,但是不管有没有,以Stanford的崔屹教授2017年10月27日在线发表在Science这篇题为“Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy”的研究论文 [6]作为冷冻电镜在材料学研究中的一个开端,小编认为是合适的,毕竟它是“他山之石,可以攻玉”的一个典范,可以说开启了材料科学研究的一个新世界。


做锂电的小伙伴都知道,锂枝晶是锂电中最大的安全隐患,Samsung、Apple产品时不时出现的自燃事故和它不无关系。时至今日,枝晶的产生、生长以及刺穿隔膜造成电池内部短路,都是电池专家们不得不直面的问题,也是材料领域“持续高温”的研究方向。然而,众所周知,锂元素非常活泼,对环境极其敏感,如何从原子层面去研究锂枝晶的形成和生长,极具挑战。传统的高分辨TEM电子束能量很高,会严重损坏枝晶结构甚至熔毁;而低分辨的TEM、直接成像、表面探针等技术获得的信息又十分有限。在这篇Science论文中,崔屹教授等受“冷冻电镜可以获得脆弱的生物大分子原子级别结构”的启发,创造性地将冷冻电镜技术引入到了敏感性电池材料和界面精细结构的研究中,克服了电池材料冷冻制样的种种难题,首次获得了锂枝晶原子分辨率级别的结构图像。结果显示,冷冻电镜技术完整地保留了枝晶的原始形貌及相关结构、化学信息,在持续10min的电子束轰击下仍然保持完好。高分辨的Cryo-EM照片表明锂枝晶是呈长条状的完美六面晶体,完全迥异于传统电镜观察到的不规则形状;而其生长行为显示其有明显的<111>优先取向,生长过程中可能发生“拐弯”,但是并没有形成晶体缺陷,不影响其完美晶体结构。另外,研究结果还包含固态电解质界面(SEI)的组成与结构。崔屹教授表示,研究结果十分令人兴奋,证明了Cryo-EM可以有效地对那些脆弱、不稳定的电池材料进行高分辨率表征,例如锂硅、硫等,并且保持它们在真实电池中的原始状态。


推荐
热点排行
一周推荐
关闭