关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

JC-1分析线粒体膜电位的方法-3

2019.4.27

3.6 Key references

 Immunol. Today, 18: 44-51, 1997.

2. Susin S.A., Zamzami N., Castedo M., Daugas E., Wang H.G., Geley S., Fassy F., Reed J.C., Kroemer G. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J. Exp. Med., 186: 25-37, 1997.

3. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature Med., 3: 614-620, 1997.

4. Cossarizza A., Kalashnikova G., Grassilli E., Chiappelli F., Salvioli S., Capri M., Barbieri D., Troiano L., Monti D., Franceschi C. Mitochondrial modifications during rat thymocyte apoptosis: a study at the single cell level. Exp. Cell Res., 214: 323-330, 1994.

5. Richter C., Schweizer M., Cossarizza A., Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett., 378: 107-110, 1996.

6. Gorman A.M., Samali A., McGowan A.J., Cotter T.G. Use fo flow cytometry techniques in studying mechanisms of apoptosis in leukemic cells. Cytometry, 29: 97-105, 1997.

7. Yang J., Liu X., Bhalla K., Kim C.N., Ibrado A.M., Cai J., Peng T.I., Jones D.P., Wang X. Prevention of apoptosis by bcl-2: release of cytochrome c from mitochondria blocked. Science, 275: 1129-1132, 1997.

8. De Maria R., Lenti L., Malisan F., d'Agostino F., Tomassini B., Zeuner A., Rippo M.R., Testi R. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science, 277: 1652-1654, 1997.

9. Maftah A., Petit J.M., Ratinaud M.H.A.J., R. 10-N nonyl-acridine orange: a fluorescent probe which stains mitochondria independently of their energetic state. Biochem. Biophys. Res. Commun., 164: 185-190, 1989.

10. Lopez-Mediavilla C., Orfao A., Gonzales M., Medina J.M. Identification by flow cytometry of two distinct rhodamine-123-stained mitochondrial populations in rat liver. FEBS Lett., 254: 115-120, 1989.

11. Terasaki M., Song J., Wong J.R., Weiss M.J., Chen B.L. Localization of endoplasmic reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes. Cell, 38: 101-108, 1984.

12. Salvioli S., Ardizzoni A., Franceschi C., Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess DY in intact cells. Implications for studies on mitochondrial functionality during apoptosis. FEBS Lett., 411: 77-82, 1997.

13. Cossarizza A., Baccarani Contri M., Kalashnikova G., Franceschi C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem. Biophys. Res. Commun., 197: 40-45, 1993.

14. Cossarizza A., Salvioli S., Franceschini M.G., Kalashnikova G., Barbieri D., Monti D., Grassilli E., Tropea F., Troiano L., Franceschi C. Mitochondria and apoptosis: a cytofluorimetric approach. Fund. Clin. Immunol., 3: 67-68, 1995.

15. Cossarizza A., Ceccarelli D., Masini A. Functional heterogeneity of isolated mitochondrial population revealed by cytofluorimetric analysis at the single organelle level. Exp. Cell Res., 222: 84-94, 1996.

16. Hada H., Honda C., Tanemura H. Spectroscopic study on the J-aggregate of cyanine dyes. I. Spectral changes of UV bands concerned with J-aggregate formation. Photogr. Sci. Eng., 21: 83-91, 1977.

17. Reers M., Smith T.W., Chen L.B. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry, 30: 4480-4486, 1991.

18. Smiley S.T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T.W., Steele G.D., Chen L.B. Intracellular heterogeneity in mitochondrial membrane potential revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA, 88: 3671-3675, 1991.

19. Johnson L.V., Walsh M.L., Bockus B.J., Chen L.B. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J. Cell Biol., 88: 526-535, 1981.

20. Goldstein S., Korczack L.B. Status of mitochondria in living human fibroblasts during growth and senescence in vitro: use of the laser dye rhodamine 123. J. Cell Biol., 91: 392-398, 1981.

21. Darzynkiewicz Z., Staiano-Coico L., Melamed M.R. Increased mitochondrial uptake of rhodamine 123 during lymphocyte stimulation. Proc. Natl. Acad. Sci. USA, 78: 2383-2387, 1981.

22. Petit P.X., Lecoeur H., Zorn E., Dauguet C., Mignotte B., Gougeon M.-L. Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J. Cell Biol., 130: 157-167, 1995.

23. Jenssen H.-L., Redmann K., Mix E. Flow cytometric estimation of transmembrane potential of macrophages - A comparison with microelectrode measurements. Cytometry, 7: 339-346, 1986.

24. Petit P.X., O'Connor D., Grunwald D., Brown S.C. Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur. J. Biochem., 194: 389-397, 1990.



 

Appendix 1: Stock solution:


JC-1 is dissolved in N,N’-dimethylformamide (Sigma-Aldrich, cat. n. D8654) at the concentration of 2.5 mg/ml.

It is stored at -20°C. Light sensitive.


Appendix 2: Reagents


 

JC-1 
Molecular Probes, 
Eugene, OR, USA
catalog No.: T-3168

 

Note: colture medium, saline solutions and washing buffers are depending on the cell type which is used for the experimental procedure (PBMC, fibroblasts, hepatocytes, etc.). For blood white cells, RPMI 1640 with 10% heat inactivated foetal calf serum, 100 IU/ml penicillin, 100 mg/ml streptomycin, 2 mM L-glutamine is normally used as complete colture medium.

Appendix 3: Equipment

 

Flow Cabinet TC60Gelaire 
Flow Cytometer FACScanBecton Dickinson
Incubator CO2-AUTO-ZEROHeraeus 
Centrifuge Minifuge RF Heraeus
Pipetman P20, P200, P1000Gilson
Vortex Vibrofix VF1 ElectronicJanke & Kunkel-Ika  
Labortechnik

 

Appendix 4: Glossary


Mitochondrial membrane potential (Dy) is generated by mitochondrial electron transport chain, which drives a proton flow from matrix through inner mitochondrial membrane to cytoplasm, thus creating an electrochemical gradient. This gradient is in turn responsible for the formation of ATP molecules by F0-F1 ATP synthase. For this reason Dy is an important parameter for mitochondrial functionality and an indirect evidence of energy status of the cell.


推荐
热点排行
一周推荐
关闭