关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

Nature子刊: 偏振光结构光显微技术(pSIM)

2019.10.31

  偏振是光作为电磁波的基本物理属性之一。偏振特性在光场调控、显微成像、量子光学、立体显示等领域得到了广泛的应用。在生物学中,通过偏振成像测量荧光团的偶极子方向,可以揭示靶蛋白的取向。超分辨显微技术虽然能够突破光的衍射极限,实现百纳米尺度的高分辨率成像,但是由于无法获知生物分子的取向性,在应用中受到了极大限制。

  为了研究蛋白在亚细胞结构中的定位和取向,北京大学工学院席鹏研究员课题组与同事近期联合开发了偏振光结构光显微技术(pSIM)。相关研究成果以“Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy”为题,于10月16日发表在《自然·通讯》期刊。

  结构光成像(SIM)由于其分辨率高、成像速度快等优点,能够高度兼容于活细胞成像,从而受到生物学家的青睐。借鉴SIM成像原理,席鹏等人构建了空间-方位角的高维复合空间,同时提取荧光偶极子的方位角与空间超分辨信息,从而实现了偏振结构光成像。

  为了验证这一技术与SIM的广泛兼容特性,研究人员测试了多种商用SIM系统及自主搭建的SIM平台,以及2D-SIM、3D-SIM、TIRF-SIM成像能力,成功提取荧光分子的偶极子方位信息与超分辨结构信息。他们进行了大量的生物学实验来证明其广泛的适用性,如λ-DNA、BAPE细胞和小鼠肾组织中的肌动蛋白丝、肌动蛋白和肌球蛋白之间的相互作用,以及中GFP染色的U2OS活细胞微管。研究团队对神经元中的膜相关周期骨架(MPS)进行了研究。pSIM以高的空间分辨率和准确的偏振检测,揭示了肌动蛋白环在MPS中“并排”组装的新模型,推翻了以往教科书上肌动蛋白环“端到端”的结构假设。pSIM具有高的时空分辨率和独特的偶极子方向信息,在未来解决各种生物问题方面具有广阔的应用前景。

219254_201910311516221.jpg

pSIM揭示了肌动蛋白环在MPS中“并排”组装的新模型

  一般来说,一项创新技术通常采取如下两种途径来造福科研界:1、将相关技术开放获取,其他学者通过搭建类似系统来得到应用;2、将相关技术商业化,其他学者通过采购仪器来得到应用。该工作开辟了推动科研的第三条途径:通过深入挖掘SIM技术及商用仪器的潜在特性,为现有的SIM系统“赋能”,挖掘出了包括其发明人都没有注意到的现有SIM系统内在的偏振探测特性,使现有系统不经任何改动,就可以实现偏振SIM的功能。这使得许多已有SIM系统的生命科学实验室可以直接进行偏振SIM的分析,将极大地推进偏振超分辨成像的研究。

  席鹏课题组近年来致力于偏振超分辨技术和SIM超分辨技术的开发,如:1、利用偏振特性的荧光偶极子超分辨技术(SDOM)发表在Light: Science and Applications,并得到Nature Methods的高度评价(相关链接http://news.pku.edu.cn/xwzh/129-295505.htm);2、将SDOM应用于金纳米粒子的SERS超分辨成像(Nanoscale 2018);3、开发了减帧SIM技术来提升结构光成像的速率2倍以上(IEEE TIP2018);4、参与了Hessian-SIM超高速结构光成像技术的开发,并提出滚动SIM技术,可提升SIM成像速度3倍以上(Nature Biotechnology 2018)。这些科研进展为该工作奠定了坚实基础。

  席鹏和清华大学戴琼海院士是这项工作的共同通讯作者,共同第一作者、共同通讯作者张昊博士得到了北京大学博雅博士后计划资助,共同第一作者陈星晔为清华大学自动化系博士生。本文的神经细胞实验与北京大学麦戈文脑科学中心张研教授课题组合作完成,体外肌动蛋白实验由中国科学院动物所李向东教授课题组合作完成,活细胞微管成像由北京大学生命科学学院陈晓伟课题组合作完成。这项工作的SIM超分辨显微成像在北京大学生物显微平台完成,得到了单春燕等老师的帮助。该工作得到国家自然科学基金委、科技部、北京市科委杰出青年科学基金、北京大学临床+X项目和仪器专项的资助。

推荐
关闭