关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

可见光双光子激发及多焦点激光扫描的结合(二)

2020.10.19

在此基础上,实验对海拉细胞中的高尔基体(mTFP1)和纤颤蛋白(EGFP)进行了在体成像,见图3(j)-(n),青色为mTFP1,绿色为EGFP,实验中两种荧光蛋白同时成像,最终采用光谱分离法将不同蛋白的荧光信号分离出来。

图4 海拉细胞在体延时三维观察高尔基体的成像结果

后续还进行了海拉细胞的活体高尔基体的三维时间分辨成像,实验使用60×/NA 1.3的硅油浸物镜及直径为1.0AU的小孔。二维图像采集的帧速率为20fps,利用样品中40个不同层的荧光图像形成3D荧光体成像,1次体成像需要2 s采集,然后重复采集18次,成像体积大小20×20×2μm(xyz)。激发波长为530 nm,激发强度为1.25×105 W/cm2,成像结果见图4。

图5 PI处理后的海拉细胞荧光图像

后续实验使用碘化丙啶(PI)来指示细胞在7、8、9和10分钟的延时观察后的损伤情况,来验证该光学系统对活细胞长期观察的适用性。在观察期间,88个焦点以100毫秒的曝光时间,曝光间隔1s照射样品,激发强度为3.21×104W/cm2,激发波长为525nm,使用前文提到的60×物镜及1.0AU孔径,图5(a)-(d)为引入PI的成像图,(e)-(h)为相应的相应衬度图。改变激发条件为每照射500ms间隔5s,得到相应的(i)-(p)。由图像可知,延时观察小于8分钟的情况下不造成可见细胞损伤,对于实际3D延时成像,由于焦平面是移动的,所以预期细胞存活时间会更长,可见这是一种在3D在体延时成像中具有很大优势的成像方案。

由于具有较高输出功率的光源可以提高成像速度,在我们的实验中,时间分辨率主要是受OPO输出可见光激光功率的限制。尽管在单点扫描系统中,v2PE激发会使得空间分辨率提高,但多聚焦v2PE显微镜具有与1PE多聚焦显微镜近乎相同的横向分辨率,这主要是多聚焦成像和单点扫描技术之间的差异造成的。由于v2PE的激发体积小于1PE,引入图像扫描技术可以进一步提高空间分辨率,这种技术需要通过在针孔阵列前引入额外的微透镜阵列来实现。除此之外,由于可见光区域的共振效应,可能会产生光漂白,因而为了延长观察时间,系统还需要对激发强度和曝光时间做进一步优化。

参考文献:

[1] Ryosuke Oketani, Haruka Suda, Kumiko Uegaki, Toshiki Kubo, Tomoki Matsuda, Masahito Yamanaka,Yoshiyuki Arai, Nicholas I. Smith, Takeharu Nagai, Katsumasa Fujita, “Visible-wavelength two-photon excitation microscopy with multifocus scanning for volumetric live-cell imaging,” J. Biomed. Opt. 25(1), 014502 (2019)


推荐
热点排行
一周推荐
关闭