关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

生化实验讲义(理论部分)——层析技术(一)

2020.3.24

  通过生物化学实验应该做到:
    ⑴ 学习设计一个实验的基本思路,掌握各个实验的基本原理,学会严密地组织自己的实验,合理地安排实验步骤和时间。
    ⑵ 训练实验的动手能力,学会熟练地使用各种生物化学实验仪器,包括各种天平、各种分光光度计、各种离心机、自动部分收集器、恒流泵、核酸蛋白检测仪、冰冻干燥机、酸度计、电导率仪、高速分散器、各种电泳装置和摇床等等。
    ⑶ 学会准确翔实地记录实验现象和数据的技能,提高实验报告的写作能力,能够整齐清洁地进行所有的实验,培养严谨细致的科学作风。
    ⑷ 掌握生物化学的各种基本实验方法和实验技术,尤其是各种电泳技术和层析枝术,为今后参加科研工作打下坚实的基础。
1.1 生物化学实验技术发展简史
      生物科学在20世纪有惊人的发展,其中生物化学与分子生物学的进展尤为迅速,这样一门最具活力和生气的实验科学,在21世纪必将成为带头的学科,这主要有赖于生物化学与分子生物学实验技术的不断发展和完善。这里我们简单回顾一下生物化学实验技术的发展历史。
      20年代: 微量分析技术导致了维生素、激素和辅酶等的发现。瑞典著名的化学家T.Svedberg奠基了“超离心技术”,1924年制成了第一台5000×g(5000 r/min~8000 r/min)相对离心力的超离心机(相对离心力“RCF”的单位可表示为“×g”),开创了生化物质离心分离的先河,并准确测定了血红蛋白等复杂蛋白质的分子量,获得了1926年的诺贝尔化学奖。
      30年代: 电子显微镜技术打开了微观世界,使我们能够看到细胞内的结构和生物大分子的内部结构。
      40年代: 层析技术大发展,两位英国科学家Martin和Synge发明了分配色谱(层析),他们获得了1952年的诺贝尔化学奖。由此,层析技术成为分离生化物质的关键技术。
    “电泳技术”是由瑞典的著名科学家Tisellius所奠基,从而开创了电泳技术的新时代,他因此获得了1948年的诺贝尔化学奖。
      50年代: 自1935年Schoenheimer和Rittenberg首次将放射性同位素示踪用于碳水化合物及类脂物质的中间代谢的研究以后,“放射性同位素示踪技术”在50年代有了大的发展,为各种生物化学代谢过程的阐明起了决定性的作用。
      60年代: 各种仪器分析方法用于生物化学研究,取得了很大的发展,如HPLC技术、红外、紫外、圆二色等光谱技术、NMR核磁共振技术等。自1958年Stem,Moore和Spackman设计出氨基酸自动分析仪,大大加快了蛋白质的分析工作。      1967年Edman和Begg制成了多肽氨基酸序列分析仪,到1973年Moore和Stein设计出氨基酸序列自动测定仪,又大大加快了对多肽一级结构的测定,十多年间氨基酸的自动测定工作得到了很大的发展和完善。
      1962年,美国科学家Watson和英国科学家Crick因为在1953年提出的DNA分子反向平行双螺旋模型而与英国科学家Wilkins分享了当年的诺贝尔生理医学奖,后者通过对DNA分子的X-射线衍射研究证实了Watson和Crick的DNA模型,他们的研究成果开创了生物科学的历史新纪元。在X-射线衍射技术方面,英国物理学家Perutz对血红蛋白的结构进行X-射线结构分析, Kendrew测定了肌红蛋白的结构,成为研究生物大分子空间立体结构的先驱,他们同获1962年诺贝尔化学奖。
      此外,在60年代,层析和电泳技术又有了重大的进展,在1968—1972年Anfinsen创建了亲和层析技术,开辟了层析技术的新领域。1969年Weber应用SDS-聚丙烯酰胺凝胶电泳技术测定了蛋白质的分子量,使电泳技术取得了重大进展。
      70年代: 基因工程技术取得了突破性的进展,Arber,Smith和Nathans三个小组发现并纯化了限制性内切酶,1972年,美国斯坦福大学的Berg等人首次用限制性内切酶切割了DNA分子,并实现了DNA分子的重组。1973年,又由美国斯坦福大学的Cohen等人第一次完成了DNA重组体的转化技术,这一年被定为基因工程的诞生年,Cohen成为基因工程的创始人,从此,生物化学进入了一个新的大发展时期。与此同时,各种仪器分析手段进一步发展,制成了DNA序列测定仪、DNA合成仪等。
      80至90年代: 基因工程技术进入辉煌发展的时期,1980年,英国剑桥大学的生物化学家Sanger和美国哈佛大学的Gilbert分别设计出两种测定DNA分子内核苷酸序列的方法,而与Berg共获诺贝尔化学奖,从此,DNA序列分析法成为生物化学与分子生物学最重要的研究手段之一。他们3人在DNA重组和RNA结构研究方面都作出了杰出的贡献。
      1981年由Jorgenson和Lukacs首先提出的高效毛细管电泳技术(HPCE),由于其高效、快速、经济,尤其适用于生物大分子的分析,因此受到生命科学、医学和化学等学科的科学工作者的极大重视,发展极为迅速,是生化实验技术和仪器分析领域的重大突破,意义深远。现今,由于HPCE技术的异军突起,HPLC技术的发展重点己转到制备和下游技术。
      1984年德国科学家Kohler、美国科学家Milstein和丹麦科学家Jerne由于发展了单克隆抗体技术,完善了极微量蛋白质的检测技术而共享了诺贝尔生理医学奖。
      1985年美国加利福尼亚州Cetus公司的Mullis等发明了PCR技术(Polymerase Chain Reaction)即聚合酶链式反应的DNA扩增技术,对于生物化学和分子生物学的研究工作具有划时代的意义,因而与第一个设计基因定点突变的Smith共享1993年的诺贝尔化学奖。
      除上述历史以外,还可以列出许多生物化学发展史上的重要成就,例如:
      美国哈佛大学的Folin教授和中国的吴宪教授对生物化学常用的各种分析方法(血糖分析、蛋白质含量分析、氨基酸测定等)的建立作出了历史性的贡献。
      美国化学家Pauling确认氢键在蛋白质结构中以及生物大分子间相互作用的重要性等,他获得了诺贝尔化学奖。
      英藉德裔生物化学家Krebs,在1937年发现了三羧酸循环,对细胞代谢及分子生物学的研究作出了重要贡献,他与美藉德裔生物化学家Lipmann共获1953年诺贝尔生理医学奖。
      英国生物化学家Sanger还于1953年确定了牛胰岛素中氨基酸的精确顺序而获得1958年的诺贝尔化学奖。
      1959年,美藉西班牙裔科学家Uchoa发现了细菌的多核苷酸磷酸化酶,研究并重建了将基因内的遗传信息通过RNA中间体翻译成蛋白质的过程。他和Kornberg分享了当年的诺贝尔生理医学奖,而后者的主要贡献在于实现了DNA分子在细菌细胞和试管内的复制。
      美国生物化学家Nirenberg在破译遗传密码方面作出了重要贡献,Holly阐明了酵母丙氨酸tRNA的核苷酸排列顺序,后来证明所有tRNA的结构均相似。美藉印度裔生物化学家Khorana曾合成了精确结构的己知核酸分子,并首次人工制成酵母基因。他们3人共获1969年诺贝尔生理医学奖。
      法国生物学家Lwoff、JAcob和生物化学家Monod由于在病毒DNA和mRNA等方面出色的大量研究工作而共获1965年诺贝尔生理医学奖。
      1988年,美国遗传学家McClintock由于在二十世纪五十年代提出并发现了可移动的遗传因子而获得诺贝尔生理医学奖。
      1989年,美国科学家Altman和Cech由于发现某些RNA具有酶的功能(称为核酶)而共享诺贝尔化学奖。
      1993年,美国科学家Roberts和Sharp由于在断裂基因方面的工作而荣获诺贝尔生理医学奖。
      1994年,美国科学家Gilman和Rodbell由于发现了G蛋白在细胞内信息传导中的作用而分享诺贝尔生理医学奖。
      1995年,美国科学家Lewis、德国科学家Nusslein-Volhard和美国科学家Wieschaus由于在20世纪40~70年代先后独立鉴定了控制果蝇体节发育基因而共享诺贝尔生理医学奖。

      我国生物化学界的先驱吴宪教授在20年代初由美回国后,在协和医科大学生化系与汪猷、张昌颖等人一道完成了蛋白质变性理论、血液生化检测和免疫化学等一系列有重大影响的研究。1965年我国化学和生物化学家用化学方法在世界上首次人工合成了具有生物活性的结晶牛胰岛素,1983年又通过大协作完成了酵母丙氨酸转移核糖核酸的人工合成。近年来,在酶学研究、蛋白质结构及生物膜的结构与功能等方面都有举世瞩目的研究成果。
      由近百年来生物化学及其实验技术的发展史可以看出,该学科的发展与实验技术的发展密切相关,每一种新的生化物质的发现与研究都离不开实验技术,实验技术每一次新的发明都大大推动了生物化学研究的进展,因而对于每一位现代生物科学工作者,尤其是生物化学工作者,学习并掌握各种生物化学实验技术就是极为重要的。


推荐
关闭