关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

拓扑异构酶的分类

2022.11.09

  可分为两类一类叫拓扑异构酶I,一类叫拓扑异构酶II。拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接,它们不需要能量辅因子如ATP或NAD。E.coliDNA拓扑异构酶I又称ω蛋白,大白鼠肝DNA拓扑异构酶I又称切刻-封闭酶(nicking-closing enzyme )。拓扑异构酶II能同时断裂并连接双股DNA链.它们通常需要能量辅因子ATP。在拓扑异构酶II中又可以分为两个亚类:一个亚类是DNA旋转酶(DNA gyrase ),其主要功能为引入负超螺旋,在DNA复制中起十分重要的作用。迄今为止,只有在原核生物中才发现DNA旋转酶.另一个亚类是转变超螺旋DNA(包括正超螺旋和负超螺旋)成为没有超螺旋的松弛形式(relaxed form )。这一反应虽然是热力学上有利的方向,但不知道为什么它们仍然像DNA旋转酶一样需要ATP,这可能与恢复酶的构象有关。这一类酶在原核生物和真核生物中都有发现。

  第一类

  DNA拓扑异构酶能催化的反应很多,这里只能作简单叙述。DNA拓扑异构酶I对单链DNA的亲和力要比双链高得多,这正是它识别负超螺旋DNA的分子基础,因为负超螺旋DNA常常会有一定程度的单链区。负超螺旋越高,DNA拓扑异构酶I作用越快。现已知道,生物体内负超螺旋稳定在5%左右,低了不行,高了也不行。生物体通过拓扑异构酶1和II的相反作用而使负超螺旋达到一个稳定状态。现已发现,编码E.coli拓扑异构酶I的基因topA发生突变,则会引起旋转酶基因的代偿性突变;否则,负超螺旋增高,细胞生活能力降低。拓扑异构酶I作用的碱基序列特异性不高,但切点一定在C的下游方向4个碱基(包括C本身)的位置。在将DNA单链切断后,拓扑异构酶I连接于切口的5端,并贮藏了水解磷酸二酯键的能量用以连接切口,因而拓扑异构酶I的作用不需能量供应。此外.拓扑异构酶I还能促进两个单链环的复性,其作用是解除复性过程所产生的链环数的负值压力,以使复性过程进行到底。如果在一个单链环上一个部位切断,而使另一部位绕过切口.则可产生三叶结结构分子 (trefoil knot)。如果有两个双链环,其中一个有一个切刻,拓扑异构酶1则可以将切刻对面的一条链切断,伎完整的双链环套进去,再连接起来而成为环连体分子(catenane),以上这三种反应示于右图。拓扑异构酶I还能催化其他反应,这将在复制和重组的机制中再讲述。

  第二类

  大肠杆菌的拓扑异构酶II(gyrase)除了引入负超螺旋以外.还具有形成或拆开双链DNA环连体和成结分子的能力。II类拓扑异构酶没有碱基序列特异性,它们可以和任何相交的两对双链DNA结合。DNA旋转酶有两个α亚基和两个β亚基。α亚基约105KDa,为gyrA基因所编码,具有磷酸二酯酶活性,可为萘啶酮酸(nalidixic acid )所抑制。A亚基约95KD,为graB基因所编码,具有ATP酶活性,可为新生霉素(novobiocin )所抑制。这两种药物均可抑制野生型大肠杆菌的DNA复制。可见DNA旋转酶为E.coli的复制所不可缺少的。在切断一条DNA双链后,两个a亚基各结合于切口的一个5'端,并贮藏了水解磷酸二酯键而获得的能量,由于该酶的整体性,因而DNA链的四个断头并无任意旋转的可能性。由于酶的别构效应,使完整的双链穿过切口,然后再重新形成磷酸二酯键。β亚基的功能在于水解ATP以使酶分子恢复原来的构象,以便进行下一轮反应。这一点可以用ATP的同系物β,γ-亚氨基ATP代替ATP而得到证实。因为这一同系物不能被DNA旋转酶所水解,但它确能促进第一轮拓扑异构反应,使负超螺旋增加,而妨碍以后进一步的拓扑异构反应。

推荐
关闭