1. Scope

1.1 This test method specifies a method for the determination of the time-weighted average mass concentration of hexavalent chromium in workplace air samples.

1.2 The method is applicable to the personal sampling of the inhalable fraction of airborne particles, as defined in ISO 7708, and to area (static) sampling.

1.3 The sample dissolution procedure specifies separate procedures for soluble and insoluble hexavalent chromium.

1.4 The method is applicable to the determination of masses of 0.01 µg to 10 µg of hexavalent chromium per sample without dilution.

1.5 The concentration range for hexavalent chromium in air for which this procedure is applicable is approximately 0.1 µg/m3 to 100 µg/m3, assuming 1 m3 of air sample. The range can be extended upwards by appropriate dilution.

1.6 Interconversion of trivalent and hexavalent chromium species may occur during sampling and sample preparation, but these processes are minimized to the extent possible by the sampling and sample preparation procedures employed.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 1193 Specification for Reagent Water
D 1356 Terminology Relating to Sampling and Analysis of Atmospheres
D 3195 Practice for Rotameter Calibration
D 4840 Guide for Sample Chain-of-Custody Procedures
E 882 Guide for Accountability and Quality Control in the Chemical Analysis Laboratory
E 1370 Guide for Air Sampling Strategies for Worker and Workplace Protection
2.2 ISO Standards:
ISO 648 Laboratory Glassware—One-mark Pipets
ISO 1042 Laboratory Glassware—One-mark Volumetric Flasks
ISO 3585 Glass Plant, Pipeline and Fittings—Properties of Borosilicate Glass 3.3
ISO 7708 Particle Size Definitions for Health-related Sampling
ISO 8655 Piston and/or Plunger-operated Volumetric Apparatus (6 Parts)

3. Summary of Test Method

3.1 A known volume of air is drawn through a filter to collect particulate hexavalent chromium. The sampler is designed to collect the inhalable fraction of airborne particles (see ISO 7708).

3.2 The filter and collected sample are subjected to a dissolution procedure in order to extract hexavalent chromium. The sample dissolution procedure may consist of one (or both) of two techniques: one for soluble and one for insoluble hexavalent chromium.

NOTE 1—If it is desired to measure both soluble as well as total hexavalent chromium, the soluble procedure is used first, and this is followed by the procedure for insoluble hexavalent chromium compounds. Thus, total Cr[VI] is the sum of soluble and insoluble hexavalent chromium compounds. On the other hand, if it is desired to measure total hexavalent chromium without first isolating insoluble Cr[VI] compounds, only the procedure for insoluble Cr[VI] is required (this will dissolve both soluble and insoluble hexavalent chromium compounds).

3.2.1 For dissolution of soluble hexavalent chromium, distilled water with no heating is used to treat the sample. Alternatively, a weakly basic ammonium sulfate/ammonium...
hydroxide buffer solution with no heating is used to extract soluble forms of hexavalent chromium.

3.2.2 For dissolution of insoluble hexavalent chromium, a weakly basic carbonate buffer solution with heating by a hot plate is used for sample treatment. Alternatively, an ultrasonic bath is used instead of a hot plate.

3.3 Aliquots of sample extracts are subjected to ion chromatography in order to separate extracted hexavalent chromium from trivalent chromium and other metal cations. An ammonium sulfate/ammonium hydroxide eluent solution is used as the mobile phase.

3.4 Following separation, hexavalent chromium is reacted with an acidic solution of 1,5-diphenylcarbazide to form a characteristic violet chromium-diphenylcarbazone complex. Post-column derivatization is used in order to react hexavalent chromium with 1,5-diphenylcarbazide.

3.5 The absorbance of the chromium-diphenylcarbazone complex is measured at 540 nm using visible spectrophotometry. Analytical results are obtained by plotting the measured absorbance as a function of concentration of the chromium-diphenylcarbazone complex.

3.6 The analysis results may be used for the assessment of workplace exposures to hexavalent chromium in air.

4. Significance and Use

4.1 Airborne hexavalent chromium is carcinogenic (1), and analytical methods for the measurement of this species in workplace aerosols are desired. Worker exposure to hexavalent chromium occurs primarily through inhalation (1), and this test method provides a means for exposure assessment to this highly toxic species. Analytical results from this procedure can be used for regulatory compliance purposes (2).

5. Reactions

5.1 Reduction of hexavalent chromium to trivalent species can occur in acidic environments, and also in the presence of organic material or environments having high iron concentrations in air (3). Reduction of hexavalent chromium can also occur on filter media (4), and efforts should be taken to minimize this contribution to sample loss. Oxidation of trivalent chromium to hexavalent species can occur in strong base and in the presence of air (5), so efforts should be taken to minimize these contributions to analytical bias. In plating mist samples and in some welding fume samples, interference from iron may be problematic (3).

6. Apparatus

6.1 Samplers, designed to collect the inhalable fraction of airborne particles, for use when the exposure limits of interest apply to the inhalable fraction of airborne particles (as defined in ISO 7708).

Note 2—In general, personal samples for collection of the inhalable fraction of airborne particles do not exhibit the same size selective characteristics if used for area (static) sampling.

Note 3—Consider whether the sample is meant to constitute only that material which is collected on filter material, or whether the sample comprises all particulate that is captured within the sampler (that is, all material on the filter, backup pad (if applicable), and on the inside walls of the sampler). See Appendix X1 for guidance on handling of wall deposits within sampling cassettes.

6.2 Filters, of a diameter suitable for use with the samplers (6.1), with a collection efficiency of not less than 99.5 % for particles with a 0.3 µm diffusion diameter (ISO 7708), and compatible with the sample preparation and analysis method.

Note 4—Typical filter diameters for personal sampling are 25 mm and 37 mm.

6.2.1 Filters should not react with Cr(VI). The following are acceptable:

6.2.1.1 Polyvinyl chloride (PVC) membrane filters, 5 µm pore size or below.

6.2.1.2 Polyvinyl fluoride (PVF) membrane filters, 5 µm pore size or below.

6.2.1.3 Polytetrafluorinated ethylene (PTFE) membrane filters, 5 µm pore size or below.

6.2.1.4 Glass fiber filters, binder-free.

6.2.1.5 Quartz fiber filters.

6.2.1.6 PVC/acrylic copolymer membrane filters, 5 µm pore size or less.

Note 5—Several types of filters have been found to cause reduction of hexavalent chromium (4). Mixed cellulose ester (MCE) filters may cause significant reduction of hexavalent chromium, and are generally unsuitable. Some PVC filters have been reported to cause hexavalent chromium reduction; this should be investigated prior to choosing PVC filters.

Note 6—When sampling chromic acid mist, there is an advantage if the oxidizing potential of hexavalent chromium is lowered, for instance by impregnating the filter with alkali. For example, this can be accomplished by soaking the filter overnight in 1 M sodium hydroxide, and allowing it to dry. This lessens the tendency of Cr(VI) to react with organic compounds in the filter material, or reducing agents and dust present in the sampled air, or both. Filter materials such as PVC and PTFE can be unsuitable for alkali treatment since they tend to be hydrophobic and therefore not easily wetted. PVF and vinyl/acrylic copolymer membrane filters have been found to be suitable for alkali treatment (3).

6.3 Backup pads, if necessary for use in the particular sampler employed.

Note 7—Cellulose backup pads should not be used for sampling of chromic acid mist, since droplets can penetrate the filter by capillary force, resulting in the possibility of Cr(VI) reduction with the backup pad material. Glass or quartz fiber backup pads could be used, or a mesh comprised of material that is resistant to chromic acid.

6.4 Sampling pumps, with an adjustable flow rate and capable of maintaining the selected flow rate (between 1 and 5 L/min for personal sampling, and between 5 and 400 L/min for high-volume sampling) to within ±5 % of the nominal value throughout the sampling period (up to 8-10 h for personal sampling, or shorter periods for high-volume sampling). For personal sampling the pumps shall be capable of being worn by the worker without impeding normal work activity. Sampling pump flow rates shall be calibrated using either a primary or secondary standard; if a secondary standard is used, it shall be calibrated using a primary standard (see D 3195).

Note 8—A flow-stabilized pump may be required to maintain the flow.
rate within the specified limits.

6.5 Flowmeter, portable, capable of measuring the selected volumetric flow rate to within ±2 %, and calibrated against a primary standard (that is, a flowmeter whose accuracy is traceable to primary standards).

6.6 Ancillary equipment:

6.6.1 Flexible tubing, of a diameter suitable for making a leak-proof connection from the sampler to the sampling pump.

6.6.2 Belts or harnesses, to which the sampling pump can be conveniently fixed for personal sampling (except where sampling pumps are small enough to fit inside workers’ pockets).

6.6.3 Flat-tipped forceps, for loading and unloading filters into or out of samplers.

6.6.4 Filter transport cassettes, or similar, if required, in which to transport samples for laboratory analysis.

6.6.5 Disposable gloves, for sample handling and prevention of sample contamination.

6.7 Analytical or laboratory apparatus

Ordinary laboratory apparatus, and:

6.7.1 Glassware, made of borosilicate glass 3.3 and complying with the requirements of ISO 3585.

6.7.1.1 Beakers, of capacities between 50 mL and 2 L.

6.7.1.2 Watch glasses, to fit the beakers.

6.7.1.3 One-mark pipets, complying with the requirements of ISO 648.

6.7.1.4 One-mark volumetric flasks, of capacities between 10 mL and 1000 mL, complying with the requirements of ISO 1042.

6.7.1.5 Piston-operated volumetric apparatus, complying with the requirements of ISO 8655. Pipettors, as an alternative to one-mark pipets for the preparation of standard solutions, calibration solutions, and dilution of samples. Dispensors, for dispensing acids.

6.7.2 Hot plate, thermostatically controlled, capable of maintaining a surface temperature of approximately 135°C; for hot plate extraction of insoluble hexavalent chromium compounds.

6.7.3 Sonicator, minimum power output 0.5 W/cm², for use in the ultrasonic extraction of insoluble hexavalent chromium compounds.

6.7.4 Ion chromatograph, having the following components:

6.7.4.1 Pump, capable of delivering a constant flow in the range of 1 to 5 mL/min at a pressure of 15 to 150 MPa.

6.7.4.2 Injection valve: A low dead-volume valve, (1 mL or less), nonmetallic, that will allow the loading of sample contents into the eluant stream. Sample loops of up to 1 mL volume will provide enhanced detection limits.

6.7.4.3 Guard column:

6.7.4.4 Separator column:

A column placed before the separator column (6.7.4.4) to protect the separator column from fouling by particles or strongly adsorbed organic constituents.

6.7.4.5 Reagent delivery module:

A device capable of delivering 0 to 2 mL/min of reagent solution against a back pressure of up to 40 kPa.

6.7.4.6 Mixing tee and reaction coil: A device capable of mixing two flowing streams with minimal band spreading.

6.7.4.7 Detector: A low-volume flow-through visible absorbance detector with a nonmetallic flow path.

6.7.4.8 Recorder, integrator or computer: A device compatible with detector output, capable of recording detector response as a function of time for the purpose of measuring peak height or area.

Note 11—The use of an automated system is recommended.

6.7.5 Eluant reservoir: A container suitable for storing eluant solution.

6.7.6 Syringe filter, 0.45 μm, for sample filtration prior to analysis. The filter material shall be chemically inert.

6.7.7 Syringe, equipped with a male fitting and a capacity of at least 1 mL; or auto sampler module with like specifications.

7. Reagents

7.1 For the analysis of hexavalent chromium, use only reagents of recognized analytical grade, and only water as specified in (7.1.1).

7.1.1 Water, complying with the requirements of ASTM Type 1 water (as specified in Specification D 1193: electrical conductivity less than 0.1 mS/m and resistivity greater than 0.01 M-Ω·m at 25°C).

7.1.2 Sulfuric acid (H₂SO₄), concentrated, specific gravity ~1.84 g/mL, ~98 % (m/m).

7.1.3 Nitric acid (HNO₃), concentrated, specific gravity ~1.42 g/mL, 69-71 % (m/m).

7.1.4 Nitric acid wash solution (1 % HNO₃): Dilute 10 mL of concentrated nitric acid (7.1.3) to 1 litre with water (7.1.1).

7.1.5 Sodium carbonate (Na₂CO₃), anhydrous, purity greater than 99.9 % (m/m).

7.1.6 Sodium hydroxide (NaOH), pellets, purity greater than 99.5 % (m/m).

7.1.7 Ammonium sulfate ((NH₄)₂SO₄), purity greater than 99.5 % (m/m).

7.1.8 Ammonia (NH₃), concentrated, specific gravity ~0.90 g/mL, ~29 % (m/m).

7.1.9 1,5-diphenylcarbazide (C₆H₅NHNHCONHNHC₆H₅), purity greater than 98 % (m/m).

7.1.10 Methanol (CH₃OH), HPLC grade.

7.1.11 Potassium dichromate (K₂Cr₂O₇), purity greater than 99.9 % (m/m).

7.1.12 Extraction solutions