Standard Test Method for Condition Monitoring of Nitrination in In-Service Petroleum and Hydrocarbon-Based Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry

This standard is issued under the fixed designation D7624; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers monitoring nitrination in gasoline and natural gas engine oils as well as in other types of lubricants where nitration by-products may form due to the combustion process or other routes of formation of nitrination compounds.

1.2 This test method uses FT-IR spectroscopy for monitoring build-up of nitration by-products in in-service petroleum and hydrocarbon-based lubricants as a result of normal machinery operation. Nitrination levels in gasoline and natural gas engine oils rise as combustion by-products react with the oil as a result of exhaust gas recirculation or a blow-by. This test method is designed as a fast, simple spectroscopic check for monitoring of nitrination in in-service petroleum and hydrocarbon-based lubricants with the objective of helping diagnose the operational condition of the machine based on measuring the level of nitrination in the oil.

1.3 Acquisition of FT-IR spectral data for measuring nitrination in in-service oil and lubricant samples is described in Practice D7418. In this test method, measurement and data interpretation parameters for nitrination using both direct trend analysis and differential (spectral subtraction) trend analysis are presented.

1.4 This test method is based on trending of spectral changes associated with nitrination in in-service petroleum and hydrocarbon-based lubricants. For direct trend analysis, values are recorded directly from absorption spectra and reported in units of 100*(absorbance per 0.1 mm pathlength) or equivalently absorbance units per centimetre. For differential trend analysis, values are recorded from the differential spectra (spectrum obtained by subtraction of the spectrum of the reference oil from that of the in-service oil) and reported in units of 100*(absorbance per 0.1 mm pathlength) or equivalently absorbance units per centimetre. Warnings or alarm limits can be set on the basis of a fixed maximum value for a single measurement or, alternatively, can be based on a rate of change of the response measured. In either case, such maintenance action limits should be determined through statistical analysis, history of the same or similar equipment, round robin tests or other methods in conjunction with the correlation of nitrination changes to equipment performance.

 NOTE 1—It is not the intent of this test method to establish or recommend normal, cautionary, warning or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group.

1.5 This test method is for petroleum and hydrocarbon-based lubricants and is not applicable for ester-based oils, including polyol esters or phosphate esters.

1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.6.1 Exception—The unit for wave numbers is cm\(^{-1}\).

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

D445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)

D2896 Test Method for Base Number of Petroleum Products by Potentiometric Perchloric Acid Titration

1 This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.96.03 on FTIR Testing Practices and Techniques Related to In-Service Lubricants.

2 The boldface numbers in parentheses refer to a list of references at the end of this standard.

3 For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website.
3. Terminology

3.1 Definitions:

3.1.1 For definitions of terms relating to infrared spectroscopy used in this test method, refer to Terminology E131. For definition of terms related to in-service oil condition monitoring, refer to Practice D7418.

3.1.2 machinery health, n—a qualitative expression of the operational status of a machine sub-component, component or entire machine, used to communicate maintenance and operational recommendations or requirements in order to continue operation, schedule maintenance or take immediate maintenance action.

4. Summary of Test Method

4.1 This test method uses FT-IR spectrometry to monitor nitration levels in in-service petroleum and hydrocarbon-based lubricants. The FT-IR spectra of in-service oil samples are collected according to the protocol for either direct trend analysis or differential trend analysis described in Practice D7418, and the levels of nitration are measured using the peak height measurements described herein.

5. Significance and Use

5.1 There is a wide variety of nitration compounds that may be produced and accumulate when oils react with gaseous nitrates formed during the engine combustion process. These nitration products may increase the viscosity, acidity and insolubles in the oil, which may lead to ring sticking and filter plugging. Monitoring of nitration products is therefore an important parameter in determining overall machinery health and should be considered in conjunction with data from other tests such as atomic emission (AE) and atomic absorption (AA) spectroscopy for wear metal analysis (Test Method D5185), physical property tests (Test Methods D445, D6304, and D2896), and other FT-IR oil analysis methods for oxidation (Test Method D7414), sulfate by-products (Test Method D7415), additive depletion (Test Method D7412), and breakdown products and external contaminants (Practice E2412), which also assess elements of the oil’s condition. (1-6)

6. Interferences

6.1 Very high water levels can interfere with the nitration measurement.

6.2 Conjugated ketones, quinones, unsaturated carboxylic acids and carboxylic acid salts (formed due to the reaction of acids with overbased oil additives) are also sources of interference.

6.3 Some aromatic compounds may interfere as well.

7. Apparatus

7.1 Fourier transform infrared spectrometer equipped with sample cell, filter (optional), and pumping system (optional) as specified in Practice D7418.

7.2 FT-IR Spectral Acquisition Parameters—Set FT-IR spectral acquisition parameters according to instructions in Practice D7418.

8. Sampling

8.1 Obtain a sample of the in-service oil and a sample of the reference oil (required only for differential trend analysis) according to the protocol described in Practice D7418.

9. Preparation of Apparatus

9.1 Rinse, flush, and clean the sample cell, inlet lines, and inlet filter according to instructions in Practice D7418.

9.2 Monitor cell pathlength as specified in Practice D7418.

10. Procedure

10.1 Collect a background spectrum according to the procedure specified in Practice D7418.

10.2 Differential Trend Analysis Only—Collect the spectrum of a reference oil sample, according to the procedure specified in Practice D7418.

10.3 Collect the spectrum of an in-service oil sample according to the procedure specified in Practice D7418.

10.4 Data Processing—All data are normalized to a pathlength of 0.100 mm according to the procedure specified in Practice D7418.

11. Calculation of Nitration Values

11.1 Procedure A (Direct Trend Analysis)—Nitration by the direct trending method is calculated from the oil sample spectrum using the measurement peak and baseline points listed in Table 1.

11.2 Procedure B (Differential Trend Analysis)—Nitration by the differential trending method is calculated from the differential spectrum using the measurement peak and baseline points listed in Table 1. Fig. 1 illustrates the band used in the measurement of nitration in the differential spectrum of diesel crankcase oil.

11.3 Reporting:

11.3.1 Procedure A (Direct Trend Analysis)—Values are reported in units of absorbance per centimetre (Abs/cm), calculated as follows:
Nitration in Abs/cm = Nitration in Abs/0.100 mm * 100

11.3.2 Procedure B (Differential Trend Analysis)—Values are reported in units of absorbance per centimeter (Abs/cm), calculated as follows:

\[
\text{Nitration in Abs/cm} = \text{Nitration in Abs/0.100 mm} \times 100
\]

(2)

11.4 Sample Carryover—To ensure the minimum amount of sample-to-sample cross-contamination or carryover, either a minimum volume of the subsequent sample or a solvent rinse is used to flush out the previous sample. The efficacy of the flushing protocol may be assessed by consecutively analyzing an oil having a low (or zero) nitration level (L1, for example, a fresh oil) and a used oil sample having a high nitration level (H1) followed by a second run of the oil sample having a low nitration level (L2) and then calculating the percent carryover (PC) as follows:

\[
PC = \left[\frac{\text{L2} - \text{L1}}{\text{H1}} \right] \times 100
\]

(3)

where L1, H1, and L2 are the values measured for nitration (using the parameters given in Table 1) for the samples run in the indicated sequence. The calculated PC should be <5%.

12. Report

12.1 Trending—Data shall be recorded and reported at selected time intervals during the lubricant’s life. Ideally, nitration values would be compared to that of the newly formulated oil and plotted over time to visualize the relative changes in nitration and to determine when there needs to be an oil change, albeit other parameters may dictate this change earlier. Sampling and reporting time intervals for nitration are based on the type of machinery and its previous history associated with this parameter.

12.2 Statistical Analysis and Alarm Limits—For statistical analysis and setting alarm limits, refer to Practice E2412, Section A3, “Distribution Profiles and Statistical Analysis.”

12.3 Effects of Oil Formulation—The compositions of various oil formulations can have an effect on the results reported for nitration value, and values from two different oil formulations should not be compared. Results should be interpreted relative to values measured for unused oils of the same formulation or trended directly from the sample history.

13. Precision and Bias

13.1 Precision—The precision of the test method has not yet been determined by a formal interlaboratory study. Preliminary examinations of repeatability have shown that the difference between repetitive results obtained by the same operator in a given laboratory applying the same test method with the