1. Scope

1.1 This specification covers the classification, processing, and properties of nuclear grade graphite billets with dimensions sufficient to meet the designer’s requirements for fuel elements, moderator or reflector blocks, in a high temperature gas cooled reactor. The graphite classes specified here would be suitable for reactor core applications where neutron irradiation induced dimensional changes are a significant design consideration.

1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. (See IEEE/ASTM SI 10.)

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

C 559 Test Method for Bulk Density by Physical Measurements of Manufactured Carbon and Graphite Articles
C 709 Terminology Relating to Manufactured Carbon and Graphite
C 781 Practice for Testing Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors
C 838 Test Method for Bulk Density of As-Manufactured Carbon and Graphite Shapes
C 1233 Practice for Determining Equivalent Boron Contents of Nuclear Materials
D 346 Practice for Collection and Preparation of Coke Samples for Laboratory Analysis
D 2638 Test Method for Real Density of Calcined Petroleum Coke by Helium Pycnometer

2.2 ASME Standard:

NQA-1 Quality Assurance Program Requirements for Nuclear Facilities

3. Terminology

3.1 Definitions—Definitions relating to this specification are given in Terminology C 709.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 baking/re-baking furnace run—total number of billets in a baking/re-baking furnace run.

3.2.2 bulk density—mass of a unit volume of material including both permeable and impermeable voids.

3.2.3 extrusion forming lot—number of billets of the same size extruded in an uninterrupted sequence.

3.2.4 green batch—mass of coke, recycle green mix, recycle graphite, and pitch that is required to produce a forming lot.

3.2.5 green mix—percentage of mix formulation, pitch and additives required for the forming lot, which is processed and ready to be formed.

3.2.6 graphite billet—extruded, molded, or iso-molded graphite artifact with dimensions sufficient to meet the designer’s requirements for reactor components.

3.2.7 graphite grade—designation given to a material by a manufacturer such that it is always reproduced to the same specification and from the same raw materials and mix formulation.

3.2.8 graphitization charge—number of billets of the same grade in a graphitizing furnace run.

3.2.9 graphitizing furnace run—total number of billets graphitized together in one graphitization furnace.

3.2.10 high purity nuclear graphite—nuclear graphite with an Equivalent Boron Content less than 2 ppm.

3.2.11 impregnation charge—number of billets in an autoclave cycle.

3.2.12 isotropic nuclear graphite—graphite in which the isotropy ratio based on the coefficient of thermal expansion is 1.00 to 1.10.

1 This specification is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.01 on Manufactured Carbon and Graphite Products.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website.

3 Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Three Park Ave., New York, NY 10016-5990.
3.2.13 low purity nuclear graphite—nuclear graphite with an Equivalent Boron Content greater than 2 ppm but less than 10 ppm.

3.2.14 mix formulation—percentages of each specifically sized filler used to manufacture a graphite grade.

3.2.15 molding forming lot—number of billets molded from a molding powder lot.

3.2.16 molding powder lot—sufficient quantity of re-milled and blended green batch produced from an uninterrupted flow of raw materials, or produced in a sequence of identical materials batches, to produce a molding forming lot.

3.2.17 near isotropic nuclear graphite—graphite in which the isotropy ratio based on the coefficient of thermal expansion is 1.10 to 1.15.

3.2.18 nuclear graphite class—designation of a nuclear graphite based upon its forming method, isotropy, purity and density (see Table 1).

3.2.19 production lot—specified number of billets made in accordance with this specification and additional requirements determined by the purchaser.

3.2.20 purification charge—number of billets in a purification run.

3.2.21 recycle green mix—ground non-baked billets or non used green mix manufactured in compliance with the mix formulation specified here.

4. Significance and Use

4.1 The purpose of this specification is to document the minimum acceptable properties and levels of quality assurance and traceability for isotropic and near-isotropic nuclear grade graphites.

5. Materials and Manufacture

5.1 Nuclear Graphite Classes—See Table 1.

5.2 Raw Materials:

5.2.1 Fillers:
5.2.1.1 The filler shall consist of a near-isotropic or isotropic coke derived from a petroleum oil or coal tar.
5.2.1.2 The coke shall have a coefficient of linear thermal expansion (CTE), determined in accordance with Practice D 219–08.

5.2.2 Binder:
5.2.2.1 The binder(s) shall consist of coal tar pitch of the same grade from the same manufacturer. The specific binder(s) used shall be identified to the purchaser and be traceable through the forming lot.

5.2.3 Impregnant—The impregnant(s) shall consist of petroleum or coal tar pitch of the same grade from the same manufacturer. The specific impregnant used shall be identified to the purchaser and be traceable through the impregnation steps.

5.2.4 Manufacturing or Processing Additives—Additives (for example, extrusion aids) may be used to improve the processing, quality and properties of the product, but only with the consent and approval of the purchaser, and they must be traceable through the forming lot.

Table 1: ASTM Standard Classes of Nuclear Graphite

<table>
<thead>
<tr>
<th>Class Description</th>
<th>Class Designation</th>
<th>CTE Isotropy Ratio ((v_{AM}/v_{WG}))</th>
<th>Ash Content, ppm (max)</th>
<th>Boron Equivalent, ppm (max)</th>
<th>Bulk Density, g/cm³ (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isomolded, isotropic—High Purity</td>
<td>IHHP</td>
<td>1.0-1.1</td>
<td>300</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td>Isomolded, isotropic—Low Purity</td>
<td>ILP</td>
<td>1.0-1.1</td>
<td>1000</td>
<td>10</td>
<td>1.7</td>
</tr>
<tr>
<td>Isomolded, near-isotropic—High Purity</td>
<td>INHP</td>
<td>1.1-1.15</td>
<td>300</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td>Isomolded, near-isotropic—Low Purity</td>
<td>INLP</td>
<td>1.1-1.15</td>
<td>1000</td>
<td>10</td>
<td>1.7</td>
</tr>
<tr>
<td>Extruded, isotropic—High Purity</td>
<td>EIHHP</td>
<td>1.0-1.1</td>
<td>300</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td>Extruded, isotropic—Low Purity</td>
<td>EILP</td>
<td>1.0-1.1</td>
<td>1000</td>
<td>10</td>
<td>1.7</td>
</tr>
<tr>
<td>Extruded, near-isotropic—High Purity</td>
<td>ENHP</td>
<td>1.1-1.15</td>
<td>300</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td>Extruded, near-isotropic—Low Purity</td>
<td>ENLP</td>
<td>1.1-1.15</td>
<td>1000</td>
<td>10</td>
<td>1.7</td>
</tr>
<tr>
<td>Molded, isotropic—High Purity</td>
<td>MIHP</td>
<td>1.0-1.1</td>
<td>300</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td>Molded, isotropic—Low Purity</td>
<td>MILP</td>
<td>1.0-1.1</td>
<td>1000</td>
<td>10</td>
<td>1.7</td>
</tr>
<tr>
<td>Molded, near-isotropic—High Purity</td>
<td>MNHP</td>
<td>1.1-1.15</td>
<td>300</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td>Molded, near-isotropic—Low Purity</td>
<td>MNLP</td>
<td>1.1-1.15</td>
<td>1000</td>
<td>10</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Table 2: ASTM Graphite Grain Size Definitions from Terminology C 781

<table>
<thead>
<tr>
<th>Grains in the Starting Mix that are: A</th>
<th>Graphite Designation</th>
<th>Definition of Grains in the Starting Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generally < 4 mm(^a)</td>
<td>Medium Grained</td>
<td>Generally</td>
</tr>
<tr>
<td>Generally < 100 µm</td>
<td>Fine Grained</td>
<td>Generally</td>
</tr>
<tr>
<td>Generally < 50 µm</td>
<td>Superfine Grained</td>
<td>Generally</td>
</tr>
<tr>
<td>Generally</td>
<td>Ultrafine Grained</td>
<td>Generally</td>
</tr>
</tbody>
</table>

\(^A\) Grain size as defined in Terminology C 781.

\(^B\) For nuclear graphite, the maximum grain size is 1.68 mm in accordance with 5.2.1.6.
5.6 Manufacture:
5.6.1 Formulation—The mix formulation (as defined in 3.2.14) and recycle green mix fraction (as defined in 3.2.21) in the fuller shall be recorded. This information shall be reported to the purchaser if requested.
5.6.2 Forming—The green mix may be formed by extrusion, molding (including vibrationally molding), or isomolding.
5.6.3 Graphitization Temperature—The graphitization temperature shall be determined on each billet using the procedure described in Practice C 781. Each billet tested in accordance with Practice C 781 shall have a Specific Electrical Resistivity (SER) corresponding to a graphitization temperature of at least 2700°C.

6. Chemical Properties
6.1 Each graphite production lot shall be sampled in accordance with Section 11. The chemical impurities to be measured shall be as agreed between the supplier and the purchaser. The minimum list of elements to be measured and used for the EBC calculation shall be B, Cd, Dy, Eu, Gd, and Sm.
6.2 The boron equivalent shall be calculated in accordance with Practice C 1233. The acceptance limits for the boron equivalent, as well as for ash content, are given in Table 1.
6.3 Table X1.1 contains a list of chemical impurities that are typically measured depending on end-use requirements. The impurities are categorized as neutron absorbing impurities, oxidation promoting catalysts, activation relevant impurities, metallic corrosion relevant impurities, and fissile/fissionable elements.

7. Physical and Mechanical Properties
7.1 Each graphite production lot shall be sampled in accordance with Section 11 and shall conform to the requirements for physical properties prescribed in Table 1 and Table 4 for the appropriate nuclear graphite class, and to the additional requirements of the purchaser.
7.2 The bulk density of each graphite billet shall be measured as described in Test Method C 838.

8. Other Requirements
8.1 The graphitized billets shall be handled and stored such that they are protected from contaminants other than ambient air.
8.2 Each graphite billet shall be marked with a unique billet identification number. Each billet shall be traceable through these identifying numbers to each of the following:
8.2.1 Mix formulation,
8.2.2 Coke batch,
8.2.3 Recycle graphite batch.
8.2.4 Forming lot,
8.2.5 Molding powder lot,
8.2.6 Baking charge,
8.2.7 Impregnant charge,
8.2.8 Graphitization furnace run,
8.2.9 Position of billet in graphitization furnace,
8.2.10 Purification step (if performed),
8.2.11 Binder pitch,
8.2.12 Impregnant pitch, and
8.2.13 Additives used (if any).

9. Dimensions
9.1 Graphite billet dimensions are typically 0.4 to 0.6 m diameter (extruded) or thickness (molded/extruded) of 0.6 by 0.6 m cross-section (iso-molded) and 0.75 to 3.0 m length.

10. Workmanship, Finish and Appearance
10.1 Graphitized billets shall be brushed clean after removal from the graphitization furnace.

11. Sampling and Cutting
11.1 A statistical sampling plan shall be developed by the supplier and agreed with the purchaser. The plan shall describe the number of graphite billets to be sampled and the frequency of sampling. The following minimum sampling frequencies are recommended per production lot, depending on the number of billets per production lot.
11.1.1 Sample four billets for each production lot containing ten or fewer billets.
11.1.2 Sample one additional billet for every five additional billets per production lot, up to 50 billets.
11.1.3 For production lots exceeding 50 billets the additional sampling requirements should be agreed between the supplier and the purchaser.
11.1.4 During production the sampling plan may be reevaluated based on statistical analysis of the production data. Any revised sampling plan must be agreed between the supplier and the purchaser.
11.2 A cutting plan shall be agreed between the purchaser and manufacturer. The cutting plan shall describe the type, location, number, orientation of the test specimens, and any required archive specimens needed for property determinations as set forth in Sections 6 and 7 of this specification. The cutting plan shall reflect property gradients and anisotropy introduced by forming and processing. In addition the number of each type of specimen defined by the cutting plan shall be sufficient to yield statistically significant data.