25.080.01 机床综合 标准查询与下载



共找到 527 条与 机床综合 相关的标准,共 36

This document specifies procedures for acceptance of metal-cutting machine tools based on the tests of their capability in machining a specified workpiece (i.e. indirect testing). It gives recommendations for test conditions, applicable measurement systems and the requirements for machine tools. This document is consistent with ISO 22514 (all parts) describing statistical methods for process management and deals with the specific application of those methods to machine tools and machining of a sample batch of test pieces. This document covers neither functional tests, which are generally carried out before testing the accuracy performance, nor the testing of the safety conditions of the machine tool. Annex A gives additional information related to statistical evaluation, Annexes B and C provide agreement and evaluations forms for short-term capability tests, while Annex D gives an example. NOTE 1 Direct testing aims to investigate individual machine tool properties, such as geometric or positioning accuracy. Short-term capability evaluation is meant to prove that a machine tool has the capability to fulfil a specific process task. It is, therefore, important to recognize that the short-term capability test is focused only on the manufactured product. This means that direct testing methods are more suited for the determination of error sources on the machine tool and for deriving constructive improvements of a machine tool that is used in a wide production spectrum; a short-term capability test is less suited for detection of error sources of the machine tool. Therefore, it is expected that short-term capability evaluation for the acceptance of metal-cutting machine tools in machining processes be primarily carried out on workpiece-dependent special-purpose machines, e.g. working stations of transfer lines, with a process-determined cycle time of less than 10 min, so that at least 50 workpieces are manufactured in one shift as the statistical uncertainty increases strongly for a smaller number. In principle, short-term capability evaluation can also be performed on universal machine tools, such as machining centres used for large batch production if they meet the above-mentioned statistical requirements. NOTE 2 The term “short-term capability”, which is a widely used term in machine tool industry, corresponds to the term “process performance index” specified in ISO 3534-2:2006 for normal distribution.

Machine tools — Short-term capability evaluation of machining processes on metal-cutting machine tools

ICS
25.080.01
CCS
发布
2022-03-10
实施

下列术语和定义适用于本文件。 3.1  试样  test piece 经加工后,具有合格尺寸且满足试验要求状态的样坯。 3.2  研磨  grinding 用砂轮或砂带磨削试样表面,以制备物理分析方法用试样。 3.3  抛光  polishing 用软转盘或连续运行的涂有耐磨材料的磨带对分析试样表面进行处理,以制备物理分析方法用试样。 3.4  切削  cutting 用机械加工方式加工分析试样的表面,以制备屑状试样或加工物理分析方法用试样的表面。 3.5  白层  white layer 在已加工表面上,由于剧烈摩擦、塑性变形和切削热的作用,形成一层物理、化学性能不同于工件材料原来性质的表面层,该表面层的晶粒形状、尺寸、方向和微观结构等都有所改变,该表面层称为已加工表面相变层。该相变层可以抵抗腐蚀液的作用,而在光学显微镜下呈现白色(或者扫描电镜下无特征),因此被称为白层。 3.6  电子背散射衍射  electron backscatter diffraction;EBSD 通过扫描电镜中电子束在倾斜(约70°)样品表层激发出的菊池衍射花样确定晶体结构、取向及相关信息的方法。 3.7  残余应力  residual stress 在没有外力或外力矩作用条件下构件或材料内部存在并且自身保持平衡的宏观应力。 3.8  透射电子显微镜  transmission electron microscope;TEM 透射电子显微镜,又称透射电镜,是将经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后的成像器件(如荧光屏、胶片、感光耦合组件)上显示出来。 4 制备要求 4.1 制备环境条件  试样制备环境: 环境温度:-10 ℃~40 ℃,恒定温度偏差±2 ℃。 相对湿度:10%~95%(无冷凝水),恒定湿度偏差±2 ℃。 4.2 制备方法和技术要求 工件材料表面完整性评价指标主要包括表面几何形貌(如表面粗糙度、波纹度、宏观缺陷等)和表面性质(如加工硬化、残余应力、白层、微观组织变化等)。 4.2.1 表面几何形貌评价试样的制备方法   图1 表面完整性评价试验面的示意图 说明: A——切削表面; B——切削速度方向; C——进给方向; D——垂直于切削表面的横截面; E——垂直于切削表面的纵截面; I——切削平面,如铣削表面; II——切削外圆柱面,如车削表面; III——切削内圆柱面,如孔加工表面。 (1)取样位置:如图1所示,切削表面(A)宜用于表面几何形貌评价。试样的位置应根据新形成表面的形状进行选择。对于面铣削新形成的加工表面,应在刀盘/刀具中心经过的区域取样。试样长度方向应与表面加工纹理垂直,或与工件加工主方向的关系在相应的产品标准或合同中规定。 (2)取样尺寸:对于一般加工表面,试料应具有足够尺寸,以保证能取出足够大小的试样进行规定的试验及必要的复验。试样长度按GB/T 1031中所规定的长度要求确定。 (3)取样表面要求:试验面上应保持初始表面状态,应无氧化皮及外来污物,尤其不应有油脂,除非在产品标准中另有规定。加工后可用不改变表面状态的清洗剂进行清洗。具体测试方法按GB/T 1031。 4.2.2 表面性质评价试样的制备方法 4.2.2.1 取样 (1)取样位置:除在产品标准中有特殊规定外,宜在能代表材料特征并易于进行进一步测试的位置取样,试样宜包含完整的加工处理和影响区。取样部位与数量按产品标准或技术条件规定。如果产品标准或技术条件未规定,对于一般切削加工(如车削、铣削等),宜在进给长度的1/2处取样;对于孔加工,宜在孔的入口端、中间位置和出口端分别取样。具体取样形状与测试指标有关。 (2)取样尺寸:沿切削深度方向的厚度应至少包含加工变质层的厚度。 (3)取样方式:取样时不得使用影响工件材料性质、微观结构的方式切取试样。宜采用砂轮切割或电火花线切割,必要时宜采取冷却措施。 4.2.2.2 制备 不同表面性质的试样制备应按照相应的制样方法。试样表面应平坦光滑,表面粗糙度Ra不大于10μm,试验面上应无氧化皮及外来污物,产品标准中另有规定的除外。 4.2.2.2.1 残余应力评价试样的制备 4.2.2.2.1.1 X射线应力测定试样的制备 (1)试样表面状态要求:如图1所示,切削表面(A)宜用于残余应力评价。试样测试点的表面状态对于实验目的而言应具有代表性;表面粗糙度Ra不大于10μm;应避开磕碰划伤痕迹。 (2)试样表面处理要求:表面处理的基本原则应尽量避免施加任何作用,以维持试样表面原有的应力状态。若在被测点有氧化层、脱碳层或油污、油漆等物质的情况下,可采用电解抛光的方法或使用某种有机溶剂、化学试剂加以清除。在此应注意防止因某种化学反应腐蚀晶界或者优先腐蚀材料中的某一相而导致局部应力松弛。 (3)试样截取方法要求:如需截取试样时,截取的试样最小尺寸,应以不导致所测应力释放为原则。如需切割工件,则应尽量避免改变被测部位原有的应力状态。切割时不宜使用火焰切割;使用电火花线切割或机械切割时,应加强冷却条件,减少切割所导致的温升;测量部位应远离切割边缘,以减小垂直于切割边缘方向上应力松弛的影响,测量部位至切割边缘的距离应大于试件该处的厚度。 (4)试样剥层方法:若需测定沿层深方向的残余应力,可通过若干次电解(或化学)剥层方法而获得。对于试样剥层,宜采用电解抛光或化学腐蚀的方法对测试点进行剥层。如果需要进行深度剥层,也可使用机械(包括手工研磨)或电火花加工方法,但是在此之后应经过电解抛光或化学腐蚀的方法去除因这些加工而引入的附加残余应力。剥层厚度应使用相应的量具测定。对于曲面和粗糙度较大的测试区域,如果剥层改变了原来的曲率和粗糙度,应记载实际状况备案。具体测试方法按GB/T 7704。 4.2.2.2.1.2 钻孔法残余应力测定试样的制备 采用钻孔法测定残余应力,需要在试验面上粘贴应变计,试验面应光滑平整,表面粗糙度Ra不大于10μm,试验面应符合胶粘剂说明书的要求,应采用对表面残余应力影响较小的抛光方式对试验面加工。具体测试方法按GB/T 31310。 4.2.2.2.1.3 残余应力评价试样的评价方法 利用X射线应力测定试样的制备方法和钻孔法残余应力测定试样的制备方法制备出试样,并进行残余应力测试,将测试结果与有限元分析结果对比,若误差小于10%,或者三次测试结果的相对误差小于10%,则认为该试样制备成功。 4.2.2.2.2 加工硬化评价试样的制备 加工硬化通常采用加工硬化层深度、加工硬化程度等指标来评价。由于切削加工引起的加工硬化层厚度较小,加工硬化层深度测试宜采用斜切法,如图2所示,以增大测试表面的面积。   图2 斜切法示意图 (1)试样表面质量要求:如图1所示,垂直于切削表面的纵截面(E)宜用于加工硬化评价。表面质量应保证压痕形状的测量精度。试样或试验层厚度至少应为压痕对角线长度的1.5倍。试样表面若沾有油渍、污物、冷却液或残渣,可用合适的溶剂(如酒精、丙酮等)清洗,清洗可在超声波中进行。任何妨碍基体金属腐蚀的金属覆盖层应在磨抛之前去除。所选用的镶嵌方法不应改变原始组织,镶嵌时试样检验面一般朝下放置。根据实际需要,可选用机械镶嵌法或树脂镶嵌法镶嵌。 (2)试样截取方法要求:对于微加工产生的小截面试样或难以取得规则形状的试样,宜对试样进行镶嵌后进行研磨、抛光处理。试样可用砂轮切割、电火花线切割、机加工(车、铣、刨、磨)、手锯以及剪切等方法截取,必要时也可用氧乙炔火焰气割法截取,硬而脆的金属可用锤击法取样。试样截取时应尽量避免截取方法对组织的影响(如变形、过热等),在后续制样过程中应去除截取操作引起的影响层,如通过砂轮磨削等;也可在截取时采取预防措施(如使用冷却液等),防止组织变化。 (3)试样表面抛光方法:抛光方法可采用机械抛光、电解抛光、化学抛光、振动抛光、显微研磨等。制备试样时应使由于过热或冷加工等因素对试样表面硬度的影响减至最小。加工硬化评价根据金属特性选择相应的硬度计,宜使用维氏硬度对加工硬化进行表征,具体测试方法按GB/T 4340.1。 (4)试样管理:取样后应对试验面进行标记、清洗、研磨、抛光处理。为了避免在准备过程中试样发生混乱,应做好试样的登记及标记工作。试样截取后应立即在试样检验面以外的其它部位打印、刻写标记,并确保在试样清洗和热处理的过程中标记不被磨损、遮蔽。试样如后续需要镶嵌则应在镶嵌后重新标记。 (5)加工硬化评价试样的评价方法:每一试验面上三个测定点的测试结果的相对误差小于10%,则认为该试样制备成功。 4.2.2.2.3 白层评价试样的制备 白层评价宜使用金相显微镜或扫描电子显微镜观测。如图1所示,垂直于切削表面的横截面(D)宜用于白层评价。由于白层厚度一般在距离已加工表面10μm以内,在制备时应避免近加工表面处产生圆弧。 (1)试样研磨方法:宜将试样进行镶嵌或机械夹持后进行研磨抛光处理。研磨时应避免因温度升高引入变质层,宜采用手工研磨。研磨时应使用由粗到细的金相砂纸进行研磨,更换砂纸前应利用显微镜确定划痕均沿研磨方向。更换砂纸对试样表面进行冲洗、吹干,并将试样旋转90°后进行下一步研磨。研磨时应注意用力均匀,避免产生表面的偏斜。研磨后需要进行抛光处理。抛光方式主要包括机械抛光、电解抛光、化学抛光、振动抛光等。抛光完成后对试样进行冲洗或超声清洗并吹干,避免因与空气接触产生氧化层,影响白层观测。 (2)白层微观组织腐蚀方法:白层微观组织的显示宜使用化学浸蚀法,根据基体组织选择适当的腐蚀液。腐蚀时,试样表面接触腐蚀液的浓度及时间应相同,以保证不同区域腐蚀程度均匀。宜根据所用材料制定规范的腐蚀液浓度、腐蚀时间,以保证不同批次腐蚀的稳定性;也可根据观察腐蚀区域的颜色变化,当腐蚀区域由亮到暗时即停止腐蚀。腐蚀结束后,应立刻将腐蚀表面置入酒精中冲洗或用酒精擦拭表面,以免残余的腐蚀液对表面产生进一步腐蚀。对于易氧化试样,冲洗后立刻将表面吹干,以备观测。若并非立刻观测,试样制备完成后应装入密封袋或干燥箱内,以防止与空气接触发生氧化,影响观测效果。具体测试方法按GB/T 13298。 4.2.2.2.4 微观组织变化评价试样的制备 (1)微观组织测试工具:加工表面的微观组织测试宜采用扫描电子显微镜、电子背散射衍射、透射电子显微镜。如图1所示,垂直于切削表面的横截面(D)宜用于加工表层/次表层微观组织变化评价。 (2)扫描电子显微镜试样的制备:采用扫描电子显微镜观测的试样制备方式与白层评价试样制备方式相同,由于扫描电子显微镜要求样品导电性良好,镶嵌时宜采用导电镶嵌料以提高观测质量。观测之前,宜在真空干燥箱内对试样进行抽真空处理,以减少扫描电子显微镜测试时抽真空的时间。 (3)电子背散射衍射试样的制备:电子背散射衍射(EBSD)测试试样尺寸应根据设备要求进行截取,一般厚度方向不超过5mm。由于EBSD技术仅观测表面下10nm-50nm,表面应避免机械损伤、保证清洁无污染、无氧化层干扰。由于加工表面的微观组织变化层厚度较小,仍然需要对试样进行镶嵌、研磨和机械抛光。机械抛光后可根据试样材料特性选择,最终处理方式应去除由于机械抛光产生的变质层。可采用的方式包括:采用二氧化硅悬浊液的手动抛光、振动抛光、电解抛光、聚焦离子束技术抛光。手动抛光需要保证抛光盘保持较慢的旋转速度(转速低于80rpm),滴入抛光液时需要均匀,抛光时间根据材料性质进行选取。振动抛光需要根据材料的性质和试样的尺寸选择振动频率、振幅和抛光时间。电解抛光则需探究清楚抛光液的种类及浓度,摸清电解抛光的温度、电压、电流及时间,以获得良好的抛光表面。以上几种处理方式结束后都应立刻清洗并吹干表面,若试样材料容易氧化宜采用酒精进行清洗。若微观组织变化层厚度极小(2um以下),宜采用聚焦离子束技术作为EBSD观测的最终处理技术,以获得良好的边缘特征。EBSD观测保证表面的“新鲜”最佳,若不能及时观测,试样可放入酒精内保存。镶嵌试样宜放入真空干燥箱内,以避免与空气发生反应。观测试样需要导电性良好,若工件材料导电性差,宜进行喷金处理或粘贴导电胶带。 (4)透射电子显微镜试样的制备:透射电子显微镜(TEM)试样大多数制备成薄片。试样的形状和外部尺寸应当和TEM的试样台相适应,也可以使用支持网夹持试样。所选择的试样区要足够薄(小于0.2um),使得电子束能透过试样,并能在观察屏上呈现出衍射谱。试样表面应清洁、干燥、平坦,无氧化层,无污染物。对于那些在高能粒子束轰击下稳定的材料,可以在TEM观察前用离子束溅射或者其它技术来避免或者去除试样表面的污染。制备好的试样应加上标签放置在专用的试样盒内,并保存在干燥器或抽真空的容器内。具体测试方法按GB/T 18907。 (5)微观组织变化评价试样的评价方法:利用扫描电子显微镜或透射电子显微镜获得的微观组织形貌清晰,或者利用电子背散射衍射获得的微观组织标定率大于75%,则认为该试样制备成功。 5 样品的包装和贮存 5.1 包装 5.1.1 现场检查的样品,应现场制备和封存,一份用于检测,一份用于需要时复查。 5.1.2 需要放入密封袋内的密封待检样品,应加贴标识,标识内容至少应包括样品名称、样品编号、样品材质等信息。 5.2 贮存 5.2.1 防潮、防油污,干燥环境密封保存。 5.2.2 样品宜保存一段时间,便于备查或复测。

Preparation method of evaluation sample for workpiece material surface integrity

ICS
25.080.01
CCS
C342
发布
2022-03-10
实施
2023-03-06

Machine tools -- Environmental evaluation of machine tools -- Part 3: Principles for testing metal-cutting machine tools with respect to energy efficiency

ICS
25.080.01
CCS
发布
2022-02-21
实施

本标准规定了激光定向能量沉积设备的组成要求、测试方法、记录与报告等内容。 本标准适用于以激光为能量源的定向能力沉积装备的检测。

Detection method of laser directed energy deposition equipment

ICS
25.080.01
CCS
C356
发布
2022-01-19
实施
2022-03-15

Machine tools — Safety — Turning machines

ICS
25.080.01
CCS
发布
2021-12-30
实施

Test code for machine tools —Part 7: Geometric accuracy of axes of rotation

ICS
25.080.01
CCS
发布
2021-12-30
实施

Test code for machine tools —Part 7: Geometric accuracy of axes of rotation

ICS
25.080.01
CCS
发布
2021-12-30
实施

Machine tools — Safety — Turning machines

ICS
25.080.01
CCS
发布
2021-12-30
实施

ISO 16089:2015 specifies the requirements and/or measures to eliminate the hazards or reduce the risks in the following groups of stationary grinding machines which are designed primarily to shape metal by grinding: Group 1: Manually controlled grinding machines without power operated axes and without numerical control. Group 2: Manually controlled grinding machines with power operated axes and limited numerically controlled capability, if applicable. Group 3: Numerically controlled grinding machines. NOTE 1 For detailed information on the groups of grinding machines, see the definitions in 3.1 and 3.4. NOTE 2 Requirements in this International Standard are, in general, applicable to all groups of grinding machines. If requirements are applicable to some special group(s) of grinding machines only, then the special group(s) of grinding machine(s) is/are specified. This International Standard covers the significant hazards listed in Clause 4 and applies to ancillary devices (e.g. for workpieces, tools, and workpiece holding devices, handling devices), which are integral to the machine. This International Standard also applies to machines which are integrated into an automatic production line or grinding cell inasmuch as the hazards and risks arising are comparable to those of machines working separately. This International Standard also includes in Clause 7 a minimum list of safety-relevant information which the manufacturer has to provide to the user. See also ISO 12100:2010, Figure 2, which illustrates the interaction of manufacturer's and user's responsibility for the operational safety. The user's responsibility to identify specific hazards (e.g. fire and explosion) and reduce the associated risks can be critical (e.g. whether the central extraction system is working correctly). Where additional metalworking processes (e.g. milling, turning, laser processing) are involved, this International Standard can be taken as a basis for safety requirements. For specific information on hazards arising from other metalworking processes, which are covered by other International Standards, see the Bibliography. This International Standard applies to machines that are manufactured after the date of issue of this International Standard. This International Standard does not apply to stationary honing, polishing, and belt grinding machines and not to transportable motor-operated electric tools in accordance with IEC 61029‑2‑4 and IEC 61029‑2‑10.

Machine tools — Safety — Stationary grinding machines

ICS
25.080.01
CCS
发布
2021-07-01
实施

ISO/TR 17243-1: 2014 provides information on how to assess the severity of machine tool spindle vibrations measured on the spindle housing. The vibration criteria provided in this part of ISO/TR 17243 apply to spindles with integral drive intended for stationary machine tools with nominal operating speeds between 600 min−1 and 30 000 min−1. This part of ISO/TR 17243 only applies to spindles with rolling element bearing types. ISO/TR 17243-1: 2014 applies to spindles assembled on metal cutting machine tools. ISO/TR 17243-1: 2014 is applicable for testing, periodic verification, and continuous monitoring. Spindles with bearing types other than rolling element bearings are excluded from this part of ISO/TR 17243. ISO/TR 17243-1: 2014 does not address geometrical accuracy of axes of rotation (see ISO 230‑7). ISO/TR 17243-1: 2014 does not address unacceptable cutting performance with regards to surface finish and accuracy. ISO/TR 17243-1: 2014 does not address vibration severity issues of machine tool spindles operating at speeds below 600 min−1 or exceeding 30 000 min−1 due to lack of supporting vibration data and limitations in many vibration measurement instruments. Also, due to lack of data, machine tool spindles with bearing types other than rolling element bearings are excluded from this part of ISO/TR 17243. ISO/TR 17243-1: 2014 does not address frequency domain analyses such as fast fourier transform (FFT) analyses, envelope analyses, or other similar techniques.

Machine tool spindles — Evaluation of machine tool spindle vibrations by measurements on spindle housing — Part 1: Spindles with rolling element bearings and integral drives operating at speeds between 600 min-1 and 30 000 min-1

ICS
25.080.01
CCS
发布
2021-07-01
实施

ISO 16093:2017 deals with all significant hazards, hazardous situations and events to sawing machines as defined in Clause 3, whose primary intended use is for sawing cold metal (ferrous and non-ferrous), or material partly of cold metal and under conditions of misuse which are reasonably foreseeable by the manufacturer (see Clause 4). ISO 16093:2017 is applicable to (metal) sawing machines which are manufactured after the date of publication of this document. When additional processing (i.e. milling, boring, marking, finishing operation, etc.) is considered, this document can serve as a basis for safety requirements. For more detailed information, refer to the bibliography. ISO 16093:2017 deals with noise hazards but does not provide a full noise test code. It is intended to draft such a code in the next revision of this document. ISO 16093:2017 does not include requirements and safety measures for fire and explosion hazards. It is intended to deal with them in the next revision of this document.

Machine tools — Safety — Sawing machines for cold metal

ICS
25.080.01
CCS
发布
2021-07-01
实施

This standard specifies the technical safety requirements and protective measures to be observed by persons entrusted with the design, manufacture and supply of presses, especially mechanical presses. The safety requirements described in this standard apply exclusively to mechani

Machine tools safety - Presses - Part 2: Safety requirement for mechanical presses (ISO 16092-2:2019); German version EN ISO 16092-2:2020

ICS
25.080.01
CCS
J50
发布
2021-04-00
实施

Machine tool lubrication requirements statement

ICS
25.080.01
CCS
J50
发布
2021-03-05
实施
2021-07-01

Telescopic machine tool guide rail protective cover

ICS
25.080.01
CCS
J50
发布
2021-03-05
实施
2021-07-01

Steel and heat treatment for machine tool parts

ICS
25.080.01
CCS
J50
发布
2021-03-05
实施
2021-07-01

Machine tools safety - Presses - Part 2: Safety requirement for mechanical presses (ISO 16092-2:2019)

ICS
25.080.01
CCS
发布
2021-03-01
实施
2021-03-01

Machine tools safety - Presses - Part 4: Safety requirements for pneumatic presses (ISO 16092-4:2019)

ICS
25.080.01
CCS
发布
2021-03-01
实施
2021-03-01

Machine tools -- Environmental evaluation of machine tools -- Part 2: Methods for measuring energy supplied to machine tools and machine tool components

ICS
25.080.01
CCS
J50
发布
2021-02-22
实施

Machine tools safety -- Presses -- Part 4: Safety requirements for pneumatic presses (ISO 16092-4:2019)

ICS
25.080.01
CCS
发布
2021-02-18
实施
2021-02-18

Machine tools safety -- Presses -- Part 2: Safety requirement for mechanical presses (ISO 16092-2:2019)

ICS
25.080.01
CCS
发布
2021-02-18
实施
2021-02-18



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号