75.100 (Lubricants, industrial oils and related pr 标准查询与下载



共找到 802 条与 相关的标准,共 54

Flash point measures the response of the test specimen to heat and ignition source under controlled laboratory conditions. It is only one of a number of properties that must be considered in assessing the overall flammability hazard of a material. Flash point is used in shipping and safety regulations to define flammable and combustible materials and classify them. Consult the particular regulation involved for precise definitions of these classes. Flash point can indicate the possible presence of highly volatile and flammable materials in a relatively nonvolatile or nonflammable material. These test methods use a smaller sample (2 to 4 mL) and a shorter test time (1 to 2 min) than traditional test methods. Method A, IP 524 and EN ISO 3680 are similar methods for flash no-flash tests. Method B, IP 523 and EN ISO 3679 are similar methods for flash point determination.1.1 These test methods cover procedures for flash point tests, within the range of –30 to 300°C, of petroleum products and biodiesel liquid fuels, using a small scale closed cup tester. The procedures may be used to determine, whether a product will or will not flash at a specified temperature (flash/no flash Method A) or the flash point of a sample (Method B). When used in conjunction with an electronic thermal flash detector, these test methods are also suitable for flash point tests on biodiesels such as fatty acid methyl esters (FAME). 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Warning statements appear throughout. See also the Material Safety Data Sheets for the product being tested.

Standard Test Methods for Flash Point by Small Scale Closed Cup Tester

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2012
实施

5.1 Lubricating oils are formulated with organo-metallic additives, which act, for example, as detergents, antioxidants, antifoaming, or antiwear agents, or a combination thereof. Some of these additives contain one or more of the following elements: magnesium, phosphorus, sulfur, chlorine, calcium, zinc, and molybdenum. This test method provides a means of determining the concentrations of these elements, which in turn provides an indication of the additive content of these oils. 5.2 Additive packages are the concentrates that are used to blend lubricating oils. 5.3 This test method is primarily intended to be used for the monitoring of additive elements in lubricating oils. 5.4 If this test method is applied to lubricating oils with matrices significantly different from the calibration materials specified in this test method, the cautions and recommendations in Section 6 should be observed when interpreting the results. 1.1 This test method covers the quantitative determination of additive elements in unused lubricating oils and additive packages, as shown in Table 1. The pooled limit of quantitation of this test method as obtained by statistical analysis of interlaboratory test results is 0.02% for magnesium, 0.003 % for phosphorus, 0.002 % for sulfur, 0.001 % for chlorine, 0.003 % for calcium, 0.001 % for zinc, and 0.002 % for molybdenum.TABLE 1 Elements and Range of Applicability Element Concentration Range in mass % Magnesium 0.02 to 0.4 Phosphorous 0.003 to 0.25 Sulfur 0.002 to 1.5 Chlorine 0.001 to 0.4 Calcium 0.003 to 1.0 Zinc 0.001 to 0.25

Standard Test Method for Determination of Additive Elements in Lubricating Oils by EDXRF Analysis

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2012
实施

This procedure is able to predict the biodegradability of lubricants within a day without dealing with microorganisms. Excellent correlation is established between the test results and the conventional biodegradation tests (see Test Method D5864 and Test Method D6731).1.1 This test method covers a procedure for predicting biodegradability of lubricants using a bio-kinetic model. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Predicting Biodegradability of Lubricants Using a Bio-kinetic Model

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2012
实施

This test method was developed to evaluate automotive engine oils for protection against oil thickening and engine wear during moderately high-speed, high-temperature service. The increase in oil viscosity obtained in this test method indicates the tendency of an oil to thicken because of oxidation. In automotive service, such thickening can cause oil pump starvation and resultant catastrophic engine failures. The deposit ratings for an oil indicate the tendency for the formation of deposits throughout the engine, including those that can cause sticking of the piston rings in their grooves. This can be involved in the loss of compression pressures in the engine. The camshaft and lifter wear values obtained in this test method provide a measure of the anti-wear quality of an oil under conditions of high unit pressure mechanical contact. The test method was developed to correlate with oils of known good and poor protection against oil thickening and engine wear. Specially formulated oils that produce less than desirable results with unleaded fuels were also used during the development of this test method. The Sequence IIIF engine oil test has replaced the Sequence IIIE test and can be used in specifications and classifications of engine lubricating oils, such as: Specification D4485, Military Specification MIL-PRF-2104, and SAE Classification J183.1.1 This test method covers an engine test procedure for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, varnish deposition, oil consumption, as well as engine wear. Such oils include both single viscosity grade and multiviscosity grade oils that are used in both spark-ignition, gasoline-fueled engines, as well as in diesel engines. Note 18212;Companion test methods used to evaluate engine oil performance for specification requirements are discussed in SAE J304. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exceptions8212;The values stated in inches for ring gap measurements are to be regarded as standard, and where there is no direct SI equivalent such as screw threads, National Pipe Threads/diameters, tubing size, or single source supply equipment specifications. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use. 1.4 This test method is arranged as follows: SubjectSection Scope1 Referenced Documents2 Terminology3 Summary of Test Method4 Significance and Use5 Apparatus6 Laboratory6.1 Drawings6.2 Specified Equipment

Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIF, Spark-Ignition Engine

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2012
实施

3.1 Metalworking may be divided into two general types of processes, metal deformation (such as rolling) and metal removal (such as grinding or cutting). This classification lists the various types of fluid and non-fluid materials used to directly provide cooling and lubrication in both types of metalworking processes. It is intended for use by those in metalworking or related industries who want to differentiate these materials. It is up to the user of this classification to determine the relevance of the items listed with respect to their application. 1.1 This classification covers and is designed to standardize and consolidate the terminology, nomenclature, and classification of metalworking fluids and related materials. 1.2 Metalworking fluids includes both metal removal and forming fluids. These are the coolants and lubricants associated with both types of processes. 1.3 This classification implies no evaluation of product quality or suitability for a given metalworking operation. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

Standard Classification for Metalworking Fluids and Related Materials

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
发布
2012
实施

This test method measures a lubricant's ability to protect final drive axles from abrasive wear, adhesive wear, plastic deformation, and surface fatigue when subjected to low-speed, high-torque conditions. Lack of protection can lead to premature gear or bearing failure, or both. This test method is used, or referred to, in the following documents: American Petroleum Institute (API) Publication 1560. STP-512A. SAE J308. Military Specification MIL-PRF-2105E. SAE J2360.1.1 This test method is commonly referred to as the L-37 test. This test method covers a test procedure for evaluating the load-carrying, wear, and extreme pressure properties of a gear lubricant in a hypoid axle under conditions of low-speed, high-torque operation. 1.2 This test method also provides for the running of the low axle temperature (Canadian) L-37 test. The procedure for the low axle temperature (Canadian) L-37 test is identical to the standard L-37 test with the exceptions of the items specifically listed in Annex A6. The procedure modifications listed in Annex A6 refer to the corresponding section of the standard L-37 test method. 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3.1 Exceptions8212;In Table A9.1, the values stated in SI units are to be regarded as standard. Also, no SI unit is provided where there is not a direct SI equivalent. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 4 and 7.

Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E36
发布
2012
实施

Lubricating greases are used in almost all bearings used in any machinery. Lubricating grease is composed of ~90 % additized oil and soap or other thickening agent. There are over a dozen metallic elements present in greases, either blended as additives for performance enhancements or as thickeners, or in used greases present as contaminants and wear metals. Determining their concentrations can be an important aspect of grease manufacture. The metal content can also indicate the amount of thickeners in the grease. Additionally, a reliable analysis technique can also assist in the process of trouble shooting problems with new and used grease in the field. Although widely used in other sectors of the oil industry for metal analysis, ICP-AES based Test Methods D4951 or D5185 cannot be used for analyzing greases because of their insolubility in organic solvents used in these test methods. Hence, grease samples need to be brought into aqueous solution by acid decomposition before ICP-AES measurements. Test Method D3340 has been used to determine lithium and sodium content of lubricating greases using flame photometry. This technique is no longer widely used. This new test method provides a test method for multi-element analysis of grease samples. This is the first DO2 standard available for simultaneous multi-element analysis of lubricating greases.1.1 This test method covers the determination of a number of metals such as aluminum, antimony, barium, calcium, iron, lithium, magnesium, molybdenum, phosphorus, silicon, sodium, sulfur, and zinc in unused lubricating greases by inductively coupled plasma atomic emission spectrometry (ICP-AES) technique. 1.1.1 The range of applicability for this test method, based on the interlaboratory study conducted in 2005, is aluminum (10–600), antimony (10–2300), barium (50–800), calcium (20–50 000), iron (10–360), lithium (300–3200), magnesium (30–10 000), molybdenum (50–22 000), phosphorus (50–2000), silicon (10–15 000), sodium (30–1500), sulfur (1600–28 000), and zinc (300–2200), all in mg/kg. Lower levels of elements may be determined by using larger sample weights, and higher levels of elements may be determined by using smaller amounts of sample or by using a larger dilution factor after sample dissolution. However, the test precision in such cases has not been determined, and may be different than the ones given in Table 1. 1.1.2 It may also be possible to determine additional metals such as bismuth, boron, cadmium, chromium, copper, lead, manganese, potassium, titanium, etc. by this technique. However, not enough data is available to specify the precision for these latter determinations. These metals may originate into greases through contamination or as additive elements. 1.1.3 During sample preparation, the grease samples are decomposed with a variety of acid mixture(s). It is beyond the scope of this test method to specify appropriate acid mixtures for all possible combination of metals present in the sample. But if the ash dissolution results in any visible insoluble material, the test method may not be applicab......

Standard Test Method for Determination of Metals in Lubricating Greases by Inductively Coupled Plasma Atomic Emission Spectrometry

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E36
发布
2012
实施

Interfacial tension measurements on electrical insulating oils provide a sensitive means of detecting small amounts of soluble polar contaminants and products of oxidation. A high value for new mineral insulating oil indicates the absence of most undesirable polar contaminants. The test is frequently applied to service-aged oils as an indication of the degree of deterioration. FIG. 1 Interfacial Tensiometer FIG. 2 Top View of Interfacial Tensiometer1.1 This test method covers the measurement of the interfacial tension between mineral oil and water, under non-equilibrium conditions. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Interfacial Tension of Oil Against Water by the Ring Method

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E36
发布
2012
实施

This test method is used to evaluate automotive manual transmission fluids for thermal instability, which results in deterioration of synchronizer performance. This test method may also be utilized in other specifications and classifications of transmission and gear lubricants such as the following: (final API designation of PG-1), Military Specification MIL-L-2105, SAE Information Report J308 Axle and Manual Transmission Lubricants, and Mack Truck GO-H Gear Lubricant Specification.1.1 This test method covers the thermal stability of fluids for use in heavy duty manual transmissions when operated at high temperatures. 1.2 The lubricant performance is measured by the number of shifting cycles that can be performed without failure of synchronization when the transmission is operated while continuously cycling between high and low range. 1.3 Correlation of test results with truck transmission service has not been established. However, the procedure has been shown to appropriately separate two transmission lubricants, which have shown satisfactory and unsatisfactory field performance in the trucks of one manufacturer. 1.4 Changes in this test method may be necessary due to refinements in the procedure, obsolescence of parts, or reagents, and so forth. These changes will be incorporated by Information Letters issued by the ASTM Test Monitoring Center (TMC). The test method will be revised to show the content of all the letters, as issued. 1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5.1 Exception8212;When materials, products, or equipment are available only in inch-pound units, SI units are omitted. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.7 This test method is arranged as follows: Section Scope 1 Referenced Documents 2 Terminology 3 Summary of Test Method 4 Significance and Use 5 Apparatus 6 Test Transmission 6.2 Transmission Mounts 6.3 Oil-Circulating System 6.4 Oil Return Hole 6.5 Air Pressure Controls 6.6 Drive System 6.7 Instrumentation 6.8 Thermocouple Placement 6.9

Standard Test Method for Evaluating the Thermal Stability of Manual Transmission Lubricants in a Cyclic Durability Test

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2012
实施

This test method measures the tendency of automotive manual transmission and final drive lubricants to deteriorate under high-temperature conditions, resulting in thick oil, sludge, carbon and varnish deposits, and the formation of corrosive products. This deterioration can lead to serious equipment performance problems, including, in particular, seal failures due to deposit formation at the shaft-seal interface. This test method is used to screen lubricants for problematic additives and base oils with regard to these tendencies. This test method is used or referred to in the following documents: American Petroleum Institute (API) Publication 1560-Lubricant Service Designations for Automotive Manual Transmissions, Manual Transaxles, and Axles, STP-512A–Laboratory Performance Tests for Automotive Gear Lubricants Intended for API GL-5 Service, SAE J308-Information Report on Axle and Manual Transmission Lubricants, and U.S. Military Specification MIL-L-2105D.1.1 This test method is commonly referred to as the L-60-1 test. It covers the oil-thickening, insolubles-formation, and deposit-formation characteristics of automotive manual transmission and final drive axle lubricating oils when subjected to high-temperature oxidizing conditions. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.2.1 Exceptions8212;The values stated in SI units for catalyst mass loss, oil mass and volume, alternator output, and air flow are to be regarded as standard. 1.2.2 SI units are provided for all parameters except where there is no direct equivalent such as the units for screw threads, or where there is a sole source supply equipment specification. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 7 and 8 and Annex A3.

Standard Test Method for Evaluation of the Thermal and Oxidative Stability of Lubricating Oils Used for Manual Transmissions and Final Drive Axles

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2012
实施

Pentane insolubles can include oil-insoluble materials and some oil-insoluble resinous matter originating from oil or additive degradation, or both. Toluene insoluble materials can come from (1) external contamination, (2) fuel carbon and highly carbonized materials from degradation of fuel, oil, and additives, or (3) engine wear and corrosion materials. A significant change in pentane insolubles, toluene insolubles (with or without coagulant), and insoluble resins indicates a change in oil which could lead to lubrication system problems. Insolubles measured can also assist in evaluating the performance characteristics of a used oil or in determining the cause of equipment failure.1.1 This test method covers the determination of pentane and toluene insolubles in used lubricating oils. 1.2 Procedure A covers the determination of insolubles without the use of coagulant in the pentane. It provides an indication of the materials that can readily be separated from the oil-solvent mixtures by centrifuging. 1.3 Procedure B covers the determination of insolubles in oils containing detergents and employs a coagulant for both the pentane and toluene insolubles. In addition to the materials separated by using Procedure A, this coagulation procedure separates some finely divided materials that may be suspended in the oil. Note 18212;Results obtained by Procedures A and B should not be compared since they usually give different values. The same procedure should be employed when comparing values obtained periodically on an oil in use or when comparing results determined by two or more laboratories. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 7 and 9.1.1.

Standard Test Method for Insolubles in Used Lubricating Oils

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2012
实施

5.1 This test method is used to evaluate automotive manual transmission fluids for thermal instability, which results in deterioration of synchronizer performance. 5.2 This test method may also be utilized in other specifications and classifications of transmission and gear lubricants such as the following: 5.2.1 (final API designation of PG-1), 5.2.2 Military Specification MIL-L-2105, 5.2.3 SAE Information Report J308 Axle and Manual Transmission Lubricants, and 5.2.4 Mack Truck GO-H Gear Lubricant Specification. 1.1 This test method covers the thermal stability of fluids for use in heavy duty manual transmissions when operated at high temperatures. 1.2 The lubricant performance is measured by the number of shifting cycles that can be performed without failure of synchronization when the transmission is operated while continuously cycling between high and low range. 1.3 Correlation of test results with truck transmission service has not been established. However, the procedure has been shown to appropriately separate two transmission lubricants, which have shown satisfactory and unsatisfactory field performance in the trucks of one manufacturer. 1.4 Changes in this test method may be necessary due to refinements in the procedure, obsolescence of parts, or reagents, and so forth. These changes will be incorporated by Information Letters issued by the ASTM Test Monitoring Center (TMC).2 The test method will be revised to show the content of all the letters, as issued. 1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5.1 Exception—When materials, products, or equipment are available only in inch-pound units, SI units are omitted. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.7 This test method is arranged as follows:  

Standard Test Method for Evaluating the Thermal Stability of Manual Transmission Lubricants in a Cyclic Durability Test

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E36
发布
2012
实施

This test method was developed to evaluate the viscometric performance of engine oils in turbocharged and intercooled four-cycle diesel engines. Results are obtained from used oil analysis. The test method is used for engine oil specification acceptance when all details of the procedure are followed. TABLE 1 PC-9 Reference Diesel Fuel PropertyTest Method MinAMaxA Sulfur, mass %D26220.040.05 Gravity, °APID287 or D405234.536.5 (37) Hydrocarbon composition, % vol AromaticsD1319 (FIA)(27) 2833 OlefinD1319 (FIA) Report Cetane numberD613 40 (42)48 Cetane indexD976 and D4737Report Copper strip corrosionD1301 Flash point, °CD9354 Pour point, °CD97

Standard Test Method for Evaluation of Diesel Engine Oils in T-8 Diesel Engine

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2012
实施

Final drive axles are often subjected to severe service where they encounter high speed shock torque conditions, characterized by sudden accelerations and decelerations. This severe service can lead to scoring distress on the ring gear and pinion surface. This test method measures anti-scoring properties of final drive lubricants. This test method is used or referred to in the following documents: American Petroleum Institute (API) Publication 1560. SAE J308 and SAE J2360.1.1 This test method covers the determination of the anti-scoring properties of final drive axle lubricating oils when subjected to high-speed and shock conditions. This test method is commonly referred to as the L-42 test. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.2.1 Exceptions8212;SI units are provided for all parameters except where there is no direct equivalent such as the units for screw threads, National Pipe Threads/diameters, tubing size, and single source equipment suppliers. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 4 and 7.

Standard Test Method for Evaluation of the Load Carrying Properties of Lubricants Used for Final Drive Axles, Under Conditions of High Speed and Shock Loading

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E36
发布
2012
实施

The determination of endotoxin concentrations in metalworking fluids is a parameter that can be used in decision-making for prudent fluid management practices (fluid draining, cleaning, recharging or biocide dosages). This standard provides a test method for analysts who perform quantitative endotoxin analyses of water-miscible metalworking fluids.1.1 This test method covers quantitative methods for the sampling and determination of bacterial endotoxin concentrations in water miscible metalworking fluids (MWF). 1.2 Users of this test method need to be familiar with the handling of MWF. 1.3 This method gives an estimate of the endotoxin concentration in the sampled MWF. 1.4 This method replaces Test Method E2250. 1.5 This test method seeks to minimize inter-laboratory variation of endotoxin data but does not ensure uniformity of results. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Determination of Endotoxin Concentrations in Water-Miscible Metalworking Fluids

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E39
发布
2011-01-01
实施

1.1 This specification covers engine oils for light-duty and heavy-duty internal combustion engines used under a variety of operating conditions in automobiles, trucks, vans, buses, and off-highway farm, industrial, and construction equipment. 1.2 This specification is not intended to cover engine oil applications such as outboard motors, snowmobiles, lawn mowers, motorcycles, railroad locomotives, or oceangoing vessels. 1.3 This specification is based on engine test results that generally have been correlated with results obtained on reference oils in actual service engines operating with gasoline or diesel fuel. As it pertains to the API SL engine oil category, it is based on engine test results that generally have been correlated with results obtained on reference oils run in gasoline engine Sequence Tests that defined engine oil categories prior to 2000. It should be recognized that not all aspects of engine oil performance are evaluated by the engine tests in this specification. In addition, when assessing oil performance, it is desirable that the oil be evaluated under actual operating conditions. 1.4 This specification includes bench and chemical tests that help evaluate some aspects of engine oil performance not covered by the engine tests in this specification. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5.1 Exceptions8212;The roller follower shaft wear in Test Method D5966 is in mils. Appendix X2 descriptions are verbatim API language, which contains a few non-SI units.

Standard Specification for Performance of Active API Service Category Engine Oils

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2011-01-01
实施

1.1 This specification covers engine oils for light-duty and heavy-duty internal combustion engines used under a variety of operating conditions in automobiles, trucks, vans, buses, and off-highway farm, industrial, and construction equipment. 1.2 This specification is not intended to cover engine oil applications such as outboard motors, snowmobiles, lawn mowers, motorcycles, railroad locomotives, or oceangoing vessels. 1.3 This specification is based on engine test results that generally have been correlated with results obtained on reference oils in actual service engines operating with gasoline or diesel fuel. As it pertains to the API SL engine oil category, it is based on engine test results that generally have been correlated with results obtained on reference oils run in gasoline engine Sequence Tests that defined engine oil categories prior to 2000. It should be recognized that not all aspects of engine oil performance are evaluated by the engine tests in this specification. In addition, when assessing oil performance, it is desirable that the oil be evaluated under actual operating conditions. 1.4 This specification includes bench and chemical tests that help evaluate some aspects of engine oil performance not covered by the engine tests in this specification. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5.1 Exceptions8212;The roller follower shaft wear in Test Method D5966 is in mils. Some of the appendixes are verbatim from other sources, and non-SI units are included.

Standard Specification for Performance of Active API Service Category Engine Oils

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2011
实施

This test method differentiates among wheel bearing greases having distinctly different high-temperature characteristics. It is not the equivalent of longtime service tests, nor is it intended to distinguish between the products having similar high-temperature performance properties. This test method has proven to be helpful in screening greases with respect to life performance for automotive wheel bearing applications. 1.1 This test method covers a laboratory procedure for evaluating the high-temperature life performance of wheel bearing greases when tested under prescribed conditions. Note 18212;Changes to this test method in the 1985 revision increased test severity. Results will not be comparable with data from earlier procedures. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exception8212;Apparatus dimensions in inches are to be regarded as the standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 8.1-8.4.

Standard Test Method for Life Performance of Automotive Wheel Bearing Grease

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E36
发布
2011
实施

Pentane insolubles can include oil-insoluble materials and some oil-insoluble resinous matter originating from oil or additive degradation, or both. Toluene insoluble materials can come from (1) external contamination, (2) fuel carbon and highly carbonized materials from degradation of fuel, oil, and additives, or (3) engine wear and corrosion materials. A significant change in pentane insolubles, toluene insolubles (with or without coagulant), and insoluble resins indicates a change in oil which could lead to lubrication system problems. Insolubles measured can also assist in evaluating the performance characteristics of a used oil or in determining the cause of equipment failure.1.1 This test method covers the determination of pentane and toluene insolubles in used lubricating oils. 1.2 Procedure A covers the determination of insolubles without the use of coagulant in the pentane. It provides an indication of the materials that can readily be separated from the oil-solvent mixtures by centrifuging. 1.3 Procedure B covers the determination of insolubles in oils containing detergents and employs a coagulant for both the pentane and toluene insolubles. In addition to the materials separated by using Procedure A, this coagulation procedure separates some finely divided materials that may be suspended in the oil. Note 18212;Results obtained by Procedures A and B should not be compared since they usually give different values. The same procedure should be employed when comparing values obtained periodically on an oil in use or when comparing results determined by two or more laboratories. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 7 and 9.1.1.

Standard Test Method for Insolubles in Used Lubricating Oils

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2011
实施

This test method was developed to evaluate automotive engine oils for protection against oil thickening and engine wear during moderately high-speed, high-temperature service. The increase in oil viscosity obtained in this test indicates the tendency of an oil to thicken because of oxidation. In automotive service, such thickening can cause oil pump starvation and resultant catastrophic engine failures. The deposit ratings for an oil indicate the tendency for the formation of deposits throughout the engine, including those that can cause sticking of the piston rings in their grooves. This can be involved in the loss of compression pressures in the engine. The camshaft and lifter wear values obtained in this test provide a measure of the anti-wear quality of an oil under conditions of high unit pressure mechanical contact. The test method was developed to correlate with oils of known good and poor protection against oil thickening and engine wear. Specially formulated oils that produce less than desirable results with unleaded fuels were also used during the development of this test. The Sequence IIIG engine oil test has replaced the Sequence IIIF test and can be used in specifications and classifications of engine lubricating oils, such as the following: Specification D4485, Military Specification MIL-PRF-2104, and SAE Classification J183.1.1 This test method covers an engine test procedure for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, varnish deposition, oil consumption, as well as engine wear. Such oils include both single viscosity grade and multiviscosity grade oils that are used in both spark-ignition, gasoline-fueled engines, as well as in diesel engines. 1.1.1 Additionally, with nonmandatory supplemental requirements, a IIIGA Test (Mini Rotary Viscometer and Cold Cranking Simulator measurements), a IIIGVS Test (EOT viscosity increase measurement), or a IIIGB Test (phosphorous retention measurement) can be conducted. These supplemental test procedures are contained in Appendixes Appendix X1, Appendix X2, and Appendix X3, respectively. Note 18212;Companion test methods used to evaluate engine oil performance for specification requirements are discussed in SAE J304. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exception8212;Where there is no direct SI equivalent such as screw threads, national pipe threads/diameters, and tubing size. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are provided in 6.14.1.1 and 7.1. 1.4 This test method is arranged as follows: Section Introduction Scope1 Referenced Documents2 Terminology3 Summary of Test Method4

Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition Engine

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2011
实施



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号