75.160.20 (Liquid fuels) 标准查询与下载



共找到 815 条与 相关的标准,共 55

1.1 This specification covers formulating specifications for purchases of aviation gasoline under contract and is intended primarily for use by purchasing agencies. 1.2 Unleaded aviation gasoline defined by this specification is for use in engines and associated aircraft that are specifically approved by the engine and aircraft manufacturers. This fuel is not considered suitable for use in other engines and associated aircraft that are certified to use only leaded aviation gasolines of the same octane grade. 1.3 This specification, unless otherwise provided, prescribes the required properties of unleaded aviation gasoline at the time and place of delivery. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Specification for Hydrocarbon Unleaded Aviation Gasoline

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 Residual fuel oils can contain H2S in the liquid phase and this can result in hazardous vapor phase levels of H2S in storage tank headspaces. The vapor phase levels can vary significantly according to the headspace volume, fuel temperature and agitation. Measurement of H2S levels in the liquid phase provides a useful indication of the residual fuel oil’s propensity to form high vapor phase levels, and lower levels in the residual fuel oil will directly reduce risk of H2S exposure. It is critical, however, that anyone involved in handling fuel oil, such as vessel owners and operators, continue to maintain appropriate safety practices designed to protect the crew, tank farm operators and others who can be exposed to H2S. 5.1.1 The measurement of H2S in the liquid phase is appropriate for product quality control, while the measurement of H2S in the vapor phase is appropriate for health and safety purposes. 5.2 This test method was developed to provide refineries, fuel terminals and independent testing laboratories, which do not have access to analytical instruments such as a gas chromatograph, with a simple and consistent field test method for the rapid determination of H2S in the vapor phase above residual fuel oils. Note 1: D5705 is one of three test methods for quantitatively measuring H2S in residual fuels: 1) Test Method D6021 is an analytical test method to determine H2S levels in the liquid phase. 2) Test Method D7621 is a rapid test method to determine H2S levels in the liquid phase. Note 2: Because of the reactivity, absorptivity and volatility of H2S, any measurement method only provides an H2S concentration at a given moment in time. 5.3 This test method does not necessarily simulate the vapor phase H2S concentration in a fuel storage tank. It does, however, provide a level of consistency so that the test result is only a function of the residual fuel oil sample and not the test method, operator, or location. No general correlation can be established between this field test and actual vapor phase concentrations of H2S in residual fuel oil storage or transports. However, a facility that produces fuel oil from the same crude source under essentially constant conditions might be able to develop a correlation for its individual case.

Standard Test Method for Measurement of Hydrogen Sulfide in the Vapor Phase Above Residual Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers the use of purchasing agencies in formulating specifications for purchases of aviation turbine fuel under contract. 1.2 This specification defines specific types of aviation turbine fuel for civil use in the operation and certification of aircraft and describes fuels found satisfactory for the operation of aircraft and engines. The specification can be used as a standard in describing the quality of aviation turbine fuels from the refinery to the aircraft. 1.3 This specification does not define the quality assurance testing and procedures necessary to ensure that fuel in the distribution system continues to comply with this specification after batch certification. Such procedures are defined elsewhere, for example in ICAO8201;9977, EI/JIG Standard8201;1530, JIG8201;1, JIG8201;2, API8201;1543, API8201;1595, and ATA-103. 1.4 This specification does not include all fuels satisfactory for aviation turbine engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification. 1.5 Aviation turbine fuels defined by this specification may be used in other than turbine engines that are specifically designed and certified for this fuel. 1.6 This specification no longer includes wide-cut aviation turbine fuel (Jet B). FAA has issued a Special Airworthiness Information Bulletin which now approves the use of Specification D6615 to replace Specification D1655 as the specification for Jet B and refers users to this standard for reference. 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

Standard Specification for Aviation Turbine Fuels

ICS
75.160.20 (Liquid fuels)
CCS
发布
2014
实施

1.1 This specification covers formulating specifications for purchases of a high-octane (MON) unleaded fuel under contract and is intended solely for use by purchasing agencies.2 1.2 This specification defines a specific type of high-octane (MON) unleaded fuel for use as an aviation spark-ignition fuel. It does not include all fuels satisfactory for reciprocating aviation engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification. 1.3 This specification, unless otherwise provided, prescribes the required properties of unleaded fuel at the time and place of delivery. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Specification for High-Octane Unleaded Fuel

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers seven grades of diesel fuel oils suitable for various types of diesel engines. These grades are described as follows: 1.1.1 Grade No. 1-D S15—A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 15 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S15 fuel.2 1.1.2 Grade No. 1-D S500—A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 500 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S500 fuel.2 1.1.3 Grade No. 1-D S5000—A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 5000 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S5000 fuels. 1.1.4 Grade No. 2-D S15—A general purpose, middle distillate fuel for use in diesel engine applications requiring a fuel with 15 ppm sulfur (maximum). It is especially suitable for use in applications with conditions of varying speed and load.2 1.1.5 Grade No. 2-D S500—A general-purpose, middle distillate fuel for use in diesel engine applications requiring a fuel with 500 ppm sulfur (maximum). It is especially suitable for use in applications with conditions of varying speed and load.2 1.1.6 Grade No. 2-D S5000—A general-purpose, middle distillate fuel for use in diesel engine applications requiring a fuel with 5000 ppm sulfur (maximum), especially in conditions of varying speed and load. 1.1.7 Grade No. 4-D—A heavy distillate fuel, or a blend of distillate and residual oil, for use in low- and medium-speed diesel engines in applications involving predominantly constant speed and load. Note 1: A more detailed description of the grades of diesel fuel oils is given in X1.2. Note 2: The Sxxx designation has been adopted to distinguish grades by sulfur rather than using words such as “Low Sulfur” as previously because the number of sulfur grades is growing and the word descriptions were thought to be not precise. S5000 grades correspond to the so-called “regular” sulfur grades, the previous No. 1-D and No. 2-D. S500 grades correspond to the......

Standard Specification for Diesel Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers the selection of fuels for gas turbines, excepting gas turbines used in aircraft, for the guidance of interested parties such as turbine manufacturers and the suppliers and purchasers of fuel oils. The specification sets forth the properties of fuels at the time and place of custody transfer to the user. 1.2 Three appendixes are provided for informational purposes only and do not constitute a requirement of this specification unless mutually agreed upon between the interested parties. 1.2.1 Appendix X1 describes the five grades of gas turbine fuels covered by this specification. Further, it states the significance of various test methods used in inspecting the fuels. 1.2.2 Appendix X2 discusses the sources of fuel contaminants and notes the significance of such contaminants in the operation of gas turbines and gas turbine fuel systems. The particular significance of trace metals in gas turbine fuels is noted. Upper limits of trace metals are recommended for the various grades of gas turbine fuels, but these recommended limits do not constitute a requirement of the specification unless mutually agreed upon by the interested parties. Limitations due to the use of used or recycled oil are also noted. Note 1: The gas turbine operator should consult Practice D4418 for methods of ensuring fuels of adequate cleanliness and for guidance on long-term storage of distillate fuels and on liquids from non-petroleum sources as gas turbine. Note 2: Nothing in this specification shall preclude observance of federal, state, or local regulations which may be more restrictive. Note 3: The generation and dissipation of static electricity can create problems in the handling of distillate gas turbine fuel oils. For more information on the subject, see Guide D4865.

Standard Specification for Gas Turbine Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
发布
2014
实施

1.1 This specification covers the requirements for automotive fuel blends of ethanol and gasoline for use in ground vehicles equipped with ethanol fuel blend flexible-fuel spark-ignition engines. Fuel produced to this specification contains 51 to 83 volume % ethanol. This fuel is for use in flexible-fuel vehicles and is sometimes referred to at retail as “Ethanol Flex-Fuel.” Appendix X1 discusses the significance of the properties specified. 1.2 The vapor pressure of ethanol fuel blends is varied for seasonal climatic changes. Vapor pressure is increased at lower temperatures to ensure adequate flexible-fuel vehicle operability. Ethanol content and selection of hydrocarbon blendstock are adjusted by the blender to meet these vapor pressure requirements. 1.3 This specification formerly covered Fuel Ethanol (Ed70-Ed85) for Automotive Spark-Ignition Engines, also known commercially as E85. The nomenclature “fuel ethanol” has been changed to “ethanol fuel blends” to distinguish this product from denatured fuel ethanol Specification D4806. To facilitate blending of ethanol fuel blends that meet seasonal vapor pressure requirements, a new lower minimum ethanol content has been established. 1.4 The United States government has established various programs for alternative fuels. Many of the definitions of alternative fuel used by these programs may be more restrictive than the requirements of this specification. See 4.1.2.1 for additional information on alternative fuels containing ethanol. 1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 The following safety hazard caveat pertains only to the test method portion, 8.1.8, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Specification for Ethanol Fuel Blends for Flexible-Fuel Automotive Spark-Ignition Engines

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers formulating specifications for purchases of aviation gasoline under contract and is intended primarily for use by purchasing agencies. 1.2 This specification defines specific types of aviation gasolines for civil use. It does not include all gasolines satisfactory for reciprocating aviation engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

Standard Specification for Aviation Gasolines

ICS
75.160.20 (Liquid fuels)
CCS
发布
2014
实施

5.1 Trace elemental analysis is used to indicate the level of contamination of middle distillate fuels. Trace metals in turbine fuels can cause corrosion and deposition on turbine components at elevated temperatures. Some diesel fuels have specification limit requirements for trace metals to guard against engine deposits. Trace level copper in middle distillate aviation turbine fuel can significantly accelerate thermal instability of the fuel leading to oxidation and production of detrimental insoluble deposits in the engine. 5.2 Gas turbine fuel oil Specification D2880 provides recommended upper limits for five trace metals (calcium, lead, sodium, potassium, and vanadium). Military specification MIL-F-16884M for naval distillate fuel sets requirements for maximum concentrations of the same five metals. Both specifications designate Test Method D3605, an atomic absorption/flame emission method, for the quantitative analysis of four of the metals. Test Method D3605 does not cover potassium. This test method provides an alternative to Test Method D3605, covers potassium and a number of additional elements. 5.3 There are several sources of multi-element contamination of naval distillate fuel. Sea water is pumped into the diesel fuel tanks (as ballast) to trim ships. Also, some of the oilers (fuel supply ships) have dirty tanks. Corrosion products come from unlined tanks, piping, pumps, and heat exchangers. 1.1 This test method covers the determination of selected elements in middle distillate fuels by inductively coupled plasma atomic emission spectrometry (ICP-AES). The specific elements are listed in Table 1. The concentration range of this test method is approximately 0.1 to 2.0 mg/kg. The test method may be used for concentrations outside of this range; however, the precision statements may not be applicable. Middle distillate fuels covered in this test method have all distillation fractions contained within the boiling range of 150 to 390°C. This includes, but is not limited to, diesel fuels and aviation turbine fuels. TABLE 1 Elements and Recommended Wavelengths Element Wavelengths, nm Aluminum 308.215, 396.153 Barium

Standard Test Method for Determination of Trace Elements in Middle Distillate Fuels by Inductively Coupled Plasma Atomic Emission Spectrometry 40;ICP-AES41;

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 The test results are indicative of fuel performance during gas turbine operation and can be used to assess the level of deposits that form when liquid fuel contacts a heated surface that is at a specified temperature. 1.1 This test method covers the procedure for rating the tendencies of gas turbine fuels to deposit decomposition products within the fuel system. 1.2 The differential pressure values in mm Hg are defined only in terms of this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 WARNING—Mercury has been designated by many regulatory agencies as a hazardous material that can cause central nervous system, kidney and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website—http://www.epa.gov/mercury/faq.htm—for additional information. Users should be aware that selling mercury and/or mercury containing products into your state or country may be prohibited by law. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 6.1.1, 7.2, 7.2.1, 7.3, 11.1.1, and Annex A5.

Standard Test Method for Thermal Oxidation Stability of Aviation Turbine Fuels

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 The mass of particulates present in a fuel is a significant factor, along with the size and nature of the individual particles, in the rapidity with which fuel system filters and other small orifices in fuel systems can become plugged. This test method provides a means of assessing the mass of particulates present in a fuel sample. 5.2 The test method can be used in specifications and purchase documents as a means of controlling particulate contamination levels in the fuels purchased. 1.1 This test method covers the determination of the mass of particulate contamination in B100 biodiesel in accordance with Specification D6751 and BXX blends that are prepared against all No. 1 and No. 2 grade fuels allowed within Specifications D396 and D975. Note 1: Middle distillate fuels with flash points less than 388201;°C have been ignited by discharges of static electricity when the fuels have been filtered through inadequately bonded or grounded glass fiber filter systems. See Guide D4865 for a more detailed discussion of static electricity formation and discharge. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Test Method for Particulate Contamination of Biodiesel B100 Blend Stock Biodiesel Esters and Biodiesel Blends by Laboratory Filtration

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 This test method is intended for use in evaluating the cleanliness of middle distillate fuels, and biodiesel and biodiesel blends for specifications and quality control purposes. 5.2 The filter media specified in the three procedures are all suitable for the materials in the Scope. Specifications calling up this test method should state the procedure required. 5.3 A change in filtration performance after storage or pretreatment can be indicative of changes of fuel condition. 5.4 The filterability of fuels varies depending on filter porosity and structure and therefore results from this test method might not correlate with full scale filtration. 5.5 Causes of poor filterability in industrial/refinery filters include fuel degradation products, contaminants (including water) picked up during storage or transfer, effects due to temperature or composition for bio fuels, incompatibility of commingled fuels, or interaction of the fuel with the filter media. Any of these could correlate with orifice or filter system plugging, or both. 5.6 The results of the FBT test can range from 1 with a fuel with very good filterability, to over 100 for a fuel with poor filterability. The selection of a single FBT number to define a pass or fail criteria is not possible as this will be dependent on the fuel type and applications. 1.1 This test method covers three procedures for the determination of the filter blocking tendency (FBT) and filterability of middle distillate fuel oils and liquid fuels such as biodiesel and biodiesel blends. The 3 procedures and associated filter types, are applicable to fuels within the viscosity range of 1.3 to 6.0 mm2/s at 40°C. Note 1: ASTM specification fuels falling within the scope of this test method are: Specifications D396 Grades No 1 and 2; Specification D975 Grades 1-D, low sulfur 1-D and 2-D; Specification D2880 Grades 1-GT and 2-GT; Specification D6751. 1.2 This test method is not applicable to fuels that contain free (undissolved) water (see 7.3). 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Determining Filter Blocking Tendency

ICS
75.160.20 (Liquid fuels)
CCS
发布
2014
实施

1.1 This specification (see Note 1) covers grades of fuel oil intended for use in various types of fuel-oil-burning equipment under various climatic and operating conditions. These grades are described as follows: 1.1.1 Grades No. 1 S5000, No. 1 S500, No. 2 S5000, and No. 2 S500 are middle distillate fuels for use in domestic and small industrial burners. Grades No. 1 S5000 and No. 1 S500 are particularly adapted to vaporizing type burners or where storage conditions require low pour point fuel. 1.1.2 Grades No. 4 (Light) and No. 4 are heavy distillate fuels or middle distillate/residual fuel blends used in commercial/industrial burners equipped for this viscosity range. 1.1.3 Grades No. 5 (Light), No. 5 (Heavy), and No. 6 are residual fuels of increasing viscosity and boiling range, used in industrial burners. Preheating is usually required for handling and proper atomization. Note 1: For information on the significance of the terminology and test methods used in this specification, see Appendix X1. Note 2: A more detailed description of the grades of fuel oils is given in X1.3. 1.2 This specification is for the use of purchasing agencies in formulating specifications to be included in contracts for purchases of fuel oils and for the guidance of consumers of fuel oils in the selection of the grades most suitable for their needs. 1.3 Nothing in this specification shall preclude observance of federal, state, or local regulations which can be more restrictive. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Note 3: The generation and dissipation of static electricity can create problems in the handling of distillate burner fuel oils. For more information on the subject, see Guide D4865.

Standard Specification for Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 Excessive levels of hydrogen sulfide in the vapor phase above residual fuel oils in storage tanks can result in health hazards, violation of local occupational health and safety regulations, and public complaint. An additional concern is corrosion that can be caused by the presence of H2S during refining or other activities. Control measures to maintain safe levels of H2S require a precise method for the measurement of potentially hazardous levels of H2S in fuel oils. (Warning—Safety. Hydrogen sulfide (H2S) is a very dangerous, toxic, explosive and flammable, colorless and transparent gas which can be found in crude oil and can be formed during the manufacture of the fuel at the refinery and can be released during handling, storage, and distribution. At very low concentrations, the gas has the characteristic smell of rotten eggs. However, at higher concentrations, it causes a loss of smell, headaches, and dizziness, and at very high concentrations, it causes instantaneous death. It is strongly recommended that personnel involved in the testing for hydrogen sulfide are aware of the hazards of vapor-phase H2S and have in place appropriate processes and procedures to manage the risk of exposure.) 5.2 This test method was developed so refiners, fuel terminal operators, and independent testing laboratory personnel can rapidly and precisely measure the amount of H2S in residual fuel oils and distillate blend stocks, with a minimum of training, in a wide range of locations. 5.3 Test Method D5705 provides a simple and consistent field test method for the rapid determination of H2S in the residual fuel oils vapor phase. However it does not necessarily simulate the vapor phase H2S concentration of a fuel storage tank nor does it provide any indication of the liquid phase H2S concentration. 5.4 Test Method D6021 does measure the H2S concentration of H2S in the liquid phase, however it requires a laboratory and a skilled operator to perform the complex procedure and calculations, and does not offer any reproducibility data. This test method (D7621) offers a 15 min automated test, simplicity, full precision, and a degree of portability. 5.5 H2S concentrations in the liquid and vapor phase attempt to reach equilibrium in a static system. However, this equilibrium and the related liquid and vapor concentrations can vary greatly depending on temperature and the chemical composition of the liquid phase. The equilibrium of the vapor phase is disrupted the moment a vent or access point is opened to collect a sample. 1.1 This test method covers procedures (A and B) for the determinat......

Standard Test Method for Determination of Hydrogen Sulfide in Fuel Oils by Rapid Liquid Phase Extraction

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers Grades UL82 and UL87 unleaded aviation gasolines, which are defined by this specification and are only for use in engines and associated aircraft that are specifically approved by the engine and aircraft manufacturers, and certified by the National Certifying Agencies to use these fuels. Components containing hetro-atoms (oxygenates) may be present within the limits specified. 1.2 A fuel may be certified to meet this specification by a producer as Grade UL82 or UL87 aviation gasoline only if blended from component(s) approved for use in these grades of aviation gasoline by the refiner(s) of such components, because only the refiner(s) can attest to the component source and processing, absence of contamination, and the additives used and their concentrations. Consequently, reclassifying of any other product to Grade UL82 or Grade UL87 aviation gasoline does not meet this specification. 1.3 Appendix X1 contains an explanation for the rationale of the specification. Appendix X2 details the reasons for the individual specification requirements. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only.

Standard Specification for Unleaded Aviation Gasoline Containing a Non-hydrocarbon Component

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers formulating specifications for purchases of a high-octane (MON) unleaded fuel under contract and is intended solely for use by purchasing agencies.2 1.2 This specification defines a specific type of high-octane (MON) unleaded fuel for use as an aviation spark-ignition fuel. It does not include all fuels satisfactory for reciprocating aviation engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification. 1.3 This specification, unless otherwise provided, prescribes the required properties of unleaded fuel at the time and place of delivery. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Specification for High-Octane Unleaded Fuel

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 This test method was developed to evaluate the wear performance of engine oils in turbocharged and intercooled four-cycle diesel engines equipped with EGR and running on ultra-low sulfur diesel fuel. Obtain results from used oil analysis and component measurements before and after test. 5.2 The test method may be used for engine oil specification acceptance when all details of the procedure are followed. 1.1 This test method covers an engine test procedure for evaluating diesel engine oils for performance characteristics, including lead corrosion and wear of piston rings and cylinder liners in an engine equipped with exhaust gas recirculation and running on ultra-low sulfur diesel fuel.2 This test method is commonly referred to as the Mack T-12. 1.1.1 This test method also provides the procedure for running an abbreviated length test, which is commonly referred to as the T-12A. The procedures for the T-12 and T-12A are identical with the exception of the items specifically listed in Annex A9. Additionally, the procedure modifications listed in Annex A9 refer to the corresponding section of the T-12 procedure. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exception—Where there is no direct SI equivalent, such as the units for screw threads, National Pipe Threads/diameters, tubing size, and single source supply equipment specifications. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Annex A6 for specific safety precautions.

Standard Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine

ICS
75.160.20 (Liquid fuels)
CCS
E34
发布
2014
实施

1.1 This specification covers the manufacture of aviation turbine fuel that consists of conventional and synthetic blending components. 1.2 This specification applies only at the point of batch origination, as follows: 1.2.1 Aviation turbine fuel manufactured, certified, and released to all the requirements of Table 1 of this specification (D7566), meets the requirements of Specification D1655 and shall be regarded as Specification D1655 turbine fuel. Duplicate testing is not necessary; the same data may be used for both D7566 and D1655 compliance. Once the fuel is released to this specification (D7566) the unique requirements of this specification are no longer applicable: any recertification shall be done in accordance with Table8201;1 of Specification D1655. 1.2.2 Field blending of synthesized paraffinic kerosine (SPK) blendstocks, as described in Annex A1 (FT SPK) or Annex A2 (HEFA SPK) with D1655 fuel (which may on the whole or in part have originated as D7566 fuel) shall be considered batch origination in which case all of the requirements of Table 1 of this specification (D7566) apply and shall be evaluated. Short form conformance test programs commonly used to ensure transportation quality are not sufficient. The fuel shall be regarded as D1655 turbine fuel after certification and release as described in 1.2.1. 1.2.3 Once a fuel is redesignated as D1655 aviation turbine fuel, it can be handled in the same fashion as the equivalent refined D1655 aviation turbine fuel. 1.3 This specification defines specific types of aviation turbine fuel that contain synthesized hydrocarbons for civil use in the operation and certification of aircraft and describes fuels found satisfactory for the operation of aircraft and engines. The specification is intended to be used as a standard in describing the quality of aviation turbine fuels and synthetic blending components at the place of manufacture but can be used to describe the quality of aviation turbine fuels for contractual transfer at all points in the distribution system. 1.4 This specification does not define the quality assurance testing and procedures necessary to ensure that fuel in the distribution system continues to comply with this specification after batch certification. Such procedures are defined elsewhere, for example in ICAO8201;9977, EI/JIG Standard8201;1530, JIG8201;1, JIG8201;2, API8201;1543, API8201;1595, and ATA-103. 1.5 This specification does not include all fuels satisfactory for aviation turbine engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification. 1.6 While aviation turbine fuels defined by Table 1 of this specification can be used in applications other than aviation turbine engines, requirements for such other applications have not been considered in the development of this specification. 1.7 Synthetic blending components, synthetic fuels, and blends of synthetic fuels with conventional petroleum-derived fuels in this specification have been evaluated and approved in accordance with the principles established in Practice D4054. 1.8 The values stated in SI ......

Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

4.1 These test methods determine the concentration of lead (from alkyl addition) in gasoline. These alkyl additives improve the antiknock properties. 4.2 Test Method C is used to ensure compliance of trace lead as required by federal regulations for lead-free gasoline (40 CFR part 80). 1.1 These test methods cover the determination of the total lead content of a gasoline within the following concentration ranges: 0.010 to 5.0 g Pb/US gal 0.012 to 6.0 g Pb/UK gal 0.0026 to 1.32 g Pb/L 1.1.1 Test Methods A and B cover the range of 0.10 to 5.08201;g Pb/US gal. Test Method C covers the range of 0.010 to 0.508201;g Pb/US gal. 1.1.2 These test methods compensate for normal variation in gasoline composition and are independent of lead alkyl type. 1.2 Test Method A (formerly in withdrawn Test Method D2599)—Sections 5 – 9. Test Method B (formerly in withdrawn Test Method D2599)—Sections 10 – 14. Test Method C (formerly in withdrawn Test Method D3229)—Sections 15 – 19. 1.3 The values stated in SI are to be regarded as the standard. For reporting purposes the values stated in grams per U.S. gallon are the preferred units in the United States. Note that in other countries, other units can be preferred. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Sections 5,

Standard Test Methods for Lead in Gasoline by X-Ray Spectroscopy

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers formulating specifications for purchases of aviation gasoline under contract and is intended primarily for use by purchasing agencies. 1.2 This specification defines a specific type of aviation gasoline, containing no lead. It does not include all gasolines satisfactory for reciprocating aviation engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification. 1.3 This specification, unless otherwise provided, prescribes the required properties of unleaded aviation gasoline at the time and place of delivery. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Specification for Hydrocarbon Unleaded Aviation Gasoline

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号