75.160.20 (Liquid fuels) 标准查询与下载



共找到 815 条与 相关的标准,共 55

1.1 This specification (see Note 1) covers grades of fuel oil intended for use in various types of fuel-oil-burning equipment under various climatic and operating conditions. These grades are described as follows: 1.1.1 Grades No. 1 S5000, No. 1 S500, No. 2 S5000, and No. 2 S500 are middle distillate fuels for use in domestic and small industrial burners. Grades No. 1 S5000 and No. 1 S500 are particularly adapted to vaporizing type burners or where storage conditions require low pour point fuel. 1.1.2 Grades No. 4 (Light) and No. 4 are heavy distillate fuels or middle distillate/residual fuel blends used in commercial/industrial burners equipped for this viscosity range. 1.1.3 Grades No. 5 (Light), No. 5 (Heavy), and No. 6 are residual fuels of increasing viscosity and boiling range, used in industrial burners. Preheating is usually required for handling and proper atomization. Note 1: For information on the significance of the terminology and test methods used in this specification, see Appendix X1. Note 2: A more detailed description of the grades of fuel oils is given in X1.3. 1.2 This specification is for the use of purchasing agencies in formulating specifications to be included in contracts for purchases of fuel oils and for the guidance of consumers of fuel oils in the selection of the grades most suitable for their needs. 1.3 Nothing in this specification shall preclude observance of federal, state, or local regulations which can be more restrictive. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Note 3: The generation and dissipation of static electricity can create problems in the handling of distillate burner fuel oils. For more information on the subject, see Guide D4865.

Standard Specification for Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 Trace elemental analysis is used to indicate the level of contamination of middle distillate fuels. Trace metals in turbine fuels can cause corrosion and deposition on turbine components at elevated temperatures. Some diesel fuels have specification limit requirements for trace metals to guard against engine deposits. Trace level copper in middle distillate aviation turbine fuel can significantly accelerate thermal instability of the fuel leading to oxidation and production of detrimental insoluble deposits in the engine. 5.2 Gas turbine fuel oil Specification D2880 provides recommended upper limits for five trace metals (calcium, lead, sodium, potassium, and vanadium). Military specification MIL-F-16884M for naval distillate fuel sets requirements for maximum concentrations of the same five metals. Both specifications designate Test Method D3605, an atomic absorption/flame emission method, for the quantitative analysis of four of the metals. Test Method D3605 does not cover potassium. This test method provides an alternative to Test Method D3605, covers potassium and a number of additional elements. 5.3 There are several sources of multi-element contamination of naval distillate fuel. Sea water is pumped into the diesel fuel tanks (as ballast) to trim ships. Also, some of the oilers (fuel supply ships) have dirty tanks. Corrosion products come from unlined tanks, piping, pumps, and heat exchangers. 1.1 This test method covers the determination of selected elements in middle distillate fuels by inductively coupled plasma atomic emission spectrometry (ICP-AES). The specific elements are listed in Table 1. The concentration range of this test method is approximately 0.1 to 2.0 mg/kg. The test method may be used for concentrations outside of this range; however, the precision statements may not be applicable. Middle distillate fuels covered in this test method have all distillation fractions contained within the boiling range of 150 to 390°C. This includes, but is not limited to, diesel fuels and aviation turbine fuels. TABLE 1 Elements and Recommended Wavelengths Element Wavelengths, nm Aluminum 308.215, 396.153 Barium

Standard Test Method for Determination of Trace Elements in Middle Distillate Fuels by Inductively Coupled Plasma Atomic Emission Spectrometry 40;ICP-AES41;

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 Excessive levels of hydrogen sulfide in the vapor phase above residual fuel oils in storage tanks can result in health hazards, violation of local occupational health and safety regulations, and public complaint. An additional concern is corrosion that can be caused by the presence of H2S during refining or other activities. Control measures to maintain safe levels of H2S require a precise method for the measurement of potentially hazardous levels of H2S in fuel oils. (Warning—Safety. Hydrogen sulfide (H2S) is a very dangerous, toxic, explosive and flammable, colorless and transparent gas which can be found in crude oil and can be formed during the manufacture of the fuel at the refinery and can be released during handling, storage, and distribution. At very low concentrations, the gas has the characteristic smell of rotten eggs. However, at higher concentrations, it causes a loss of smell, headaches, and dizziness, and at very high concentrations, it causes instantaneous death. It is strongly recommended that personnel involved in the testing for hydrogen sulfide are aware of the hazards of vapor-phase H2S and have in place appropriate processes and procedures to manage the risk of exposure.) 5.2 This test method was developed so refiners, fuel terminal operators, and independent testing laboratory personnel can rapidly and precisely measure the amount of H2S in residual fuel oils and distillate blend stocks, with a minimum of training, in a wide range of locations. 5.3 Test Method D5705 provides a simple and consistent field test method for the rapid determination of H2S in the residual fuel oils vapor phase. However it does not necessarily simulate the vapor phase H2S concentration of a fuel storage tank nor does it provide any indication of the liquid phase H2S concentration. 5.4 Test Method D6021 does measure the H2S concentration of H2S in the liquid phase, however it requires a laboratory and a skilled operator to perform the complex procedure and calculations, and does not offer any reproducibility data. This test method (D7621) offers a 15 min automated test, simplicity, full precision, and a degree of portability. 5.5 H2S concentrations in the liquid and vapor phase attempt to reach equilibrium in a static system. However, this equilibrium and the related liquid and vapor concentrations can vary greatly depending on temperature and the chemical composition of the liquid phase. The equilibrium of the vapor phase is disrupted the moment a vent or access point is opened to collect a sample. 1.1 This test method covers procedures (A and B) for the determinat......

Standard Test Method for Determination of Hydrogen Sulfide in Fuel Oils by Rapid Liquid Phase Extraction

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers the establishment of requirements of automotive fuels for ground vehicles equipped with spark-ignition engines. 1.2 This specification describes various characteristics of automotive fuels for use over a wide range of operating conditions. It provides for a variation of the volatility and water tolerance of automotive fuel in accordance with seasonal climatic changes at the locality where the fuel is used. For the period May 1 through Sept. 15, the maximum vapor pressure limits issued by the United States (U.S.) Environmental Protection Agency (EPA) are specified for each geographical area except Alaska and Hawaii. Variation of the antiknock index with seasonal climatic changes and altitude is discussed in Appendix X1. This specification neither necessarily includes all types of fuels that are satisfactory for automotive vehicles, nor necessarily excludes fuels that can perform unsatisfactorily under certain operating conditions or in certain equipment. The significance of each of the properties of this specification is shown in Appendix X1. 1.3 The spark-ignition engine fuels covered in this specification are gasoline and its blends with oxygenates, such as alcohols and ethers. This specification does not apply to fuels that contain an oxygenate as the primary component, such as Fuel Methanol (M85). The concentrations and types of oxygenates are not specifically limited in this specification. However, depending on oxygenate type, as oxygenate content increases above some threshold level, the likelihood for vehicle problems also increases. The composition of both unleaded and leaded fuel is limited by economic, legal, and technical consideration, but their properties, including volatility, are defined by this specification. In addition, the composition of unleaded fuel is subject to the rules, regulations, and Clean Air Act waivers of the U.S. Environmental Protection Agency (EPA). With regard to fuel properties, including volatility, this specification can be more or less restrictive than the EPA rules, regulations, and waivers. Refer to Appendix X3 for discussions of EPA rules relating to fuel volatility, lead and phosphorous contents, deposit control additive certification, and use of oxygenates in blends with unleaded gasoline. Contact the EPA for the latest versions of the rules and additional requirements. 1.4 This specification does not address the emission characteristics of reformulated spark-ignition engine fuel. Reformulated spark-ignition engine fuel is required in some areas to lower emissions from automotive vehicles, and its characteristics are described in the research report on reformulated spark-ignition engine fuel.2 However, in addition to the legal requirements found in this research report, reformulated spark-ignition engine fuel should meet the performance requirements found in this specification. 1.5 This specification represents a description of automotive fuel as of the date of publication. The specification is under continuous review, which can result in revisions based on changes in fuel, automotive requirements, or test methods, or a combination thereof. All users of this specification, therefore, should refer to the latest edition.

Standard Specification for Automotive Spark-Ignition Engine Fuel

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers formulating specifications for purchases of a high-octane (MON) unleaded fuel under contract and is intended solely for use by purchasing agencies.2 1.2 This specification defines a specific type of high-octane (MON) unleaded fuel for use as an aviation spark-ignition fuel. It does not include all fuels satisfactory for reciprocating aviation engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification. 1.3 This specification, unless otherwise provided, prescribes the required properties of unleaded fuel at the time and place of delivery. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Specification for High-Octane Unleaded Fuel

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 Residual fuel oils can contain H2S in the liquid phase and this can result in hazardous vapor phase levels of H2S in storage tank headspaces. The vapor phase levels can vary significantly according to the headspace volume, fuel temperature and agitation. Measurement of H2S levels in the liquid phase provides a useful indication of the residual fuel oil’s propensity to form high vapor phase levels, and lower levels in the residual fuel oil will directly reduce risk of H2S exposure. It is critical, however, that anyone involved in handling fuel oil, such as vessel owners and operators, continue to maintain appropriate safety practices designed to protect the crew, tank farm operators and others who can be exposed to H2S. 5.1.1 The measurement of H2S in the liquid phase is appropriate for product quality control, while the measurement of H2S in the vapor phase is appropriate for health and safety purposes. 5.2 This test method was developed to provide refineries, fuel terminals and independent testing laboratories, which do not have access to analytical instruments such as a gas chromatograph, with a simple and consistent field test method for the rapid determination of H2S in the vapor phase above residual fuel oils. Note 1: D5705 is one of three test methods for quantitatively measuring H2S in residual fuels: 1) Test Method D6021 is an analytical test method to determine H2S levels in the liquid phase. 2) Test Method D7621 is a rapid test method to determine H2S levels in the liquid phase. Note 2: Because of the reactivity, absorptivity and volatility of H2S, any measurement method only provides an H2S concentration at a given moment in time. 5.3 This test method does not necessarily simulate the vapor phase H2S concentration in a fuel storage tank. It does, however, provide a level of consistency so that the test result is only a function of the residual fuel oil sample and not the test method, operator, or location. No general correlation can be established between this field test and actual vapor phase concentrations of H2S in residual fuel oil storage or transports. However, a facility that produces fuel oil from the same crude source under essentially constant conditions might be able to develop a correlation for its individual case.

Standard Test Method for Measurement of Hydrogen Sulfide in the Vapor Phase Above Residual Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 The induction period may be used as an indication of the oxidation and storage stability of middle distillate fuel. 5.2 Compared to some other oxidation and storage stability test methods, this method uses a small sample and gives a result in a short time period. 1.1 This laboratory test method covers a quantitative determination of the stability of middle distillate fuels such as diesel fuels and heating oils, with up to 100% biodiesel, under accelerated oxidation conditions, by an automatic instrument.Note 1—This test method is technically equivalent to test method EN 16091 1.2 This test method is designed for products complying with Specification D975 on Diesel Fuel, Grades No. 1D and 2D; Specification D396 on Burner Fuel, Grades No. 1 and No. 2; Specification D6751 on Biodiesel, B100, and Specification D7467 on Diesel Fuel Oil, B6 to B20. 1.3 This test method measures the induction period, under specified conditions, which can be used as an indication of the oxidation and storage stability of middle distillate fuels. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Oxidation Stability of Middle Distillate Fuelsmdash;Rapid Small Scale Oxidation Test 40;RSSOT41;

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers seven grades of diesel fuel oils suitable for various types of diesel engines. These grades are described as follows: 1.1.1 Grade No. 1-D S15—A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 15 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S15 fuel.2 1.1.2 Grade No. 1-D S500—A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 500 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S500 fuel.2 1.1.3 Grade No. 1-D S5000—A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 5000 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S5000 fuels. 1.1.4 Grade No. 2-D S15—A general purpose, middle distillate fuel for use in diesel engine applications requiring a fuel with 15 ppm sulfur (maximum). It is especially suitable for use in applications with conditions of varying speed and load.2 1.1.5 Grade No. 2-D S500—A general-purpose, middle distillate fuel for use in diesel engine applications requiring a fuel with 500 ppm sulfur (maximum). It is especially suitable for use in applications with conditions of varying speed and load.2 1.1.6 Grade No. 2-D S5000—A general-purpose, middle distillate fuel for use in diesel engine applications requiring a fuel with 5000 ppm sulfur (maximum), especially in conditions of varying speed and load. 1.1.7 Grade No. 4-D—A heavy distillate fuel, or a blend of distillate and residual oil, for use in low- and medium-speed diesel engines in applications involving predominantly constant speed and load.Note 1—A more detailed description of the grades of diesel fuel oils is given in X1.2.Note 2—The Sxxx designation has been adopted to distinguish grades by sulfur rather than using words such as “Low Sulfur” as previously because the number of sulfur grades is growing and the word descriptions were thought to be not precise. S5000 grades correspond to the so-called “regular” sulfur grades, the previous No. 1-D and No. 2-D. S500 grades correspond to the previous “Low Sulfur” grades. S15 grades were not in the previous grade system and are commonly referred to as “Ultra-Low Sulfur” grades or ULSD. 1.2 This specification, unless otherwise provided by agreement between the purchaser and the supplier, prescribes the required properties of diesel fuels at the time and place of delivery. 1.2.1 Nothing in this specification shall preclude observance of federal, state, or local regulations which can be more restrictive.

Standard Specification for Diesel Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

5.1 The ID and DCN values determined by this test method can provide a measure of the ignition characteristics of diesel fuel oil in compression ignition engines. 5.2 This test can be used by engine manufacturers, petroleum refiners and marketers, and in commerce as a specification aid to relate or match fuels and engines. 5.3 The relationship of diesel fuel oil DCN determinations to the performance of full-scale, variable-speed, variable-load diesel engines is not completely understood. 5.4 This test may be applied to non-conventional fuels. It is recognized that the performance of non-conventional fuels in full-scale engines is not completely understood. The user is therefore cautioned to investigate the suitability of ignition characteristic measurements for predicting performance in full-scale engines for these types of fuels. 5.5 This test determines ignition characteristics and requires a sample of approximately 220 mL and a test time of approximately 20 min on a fit-for-use instrument. 1.1 This test method covers the quantitative determination of the ignition characteristics of conventional diesel fuel oils, diesel fuel oils containing cetane number improver additives, and is applicable to products typical of Specification D975, Grades No. 1-D and 2-D regular and low-sulfur diesel fuel oils, European standard EN 590, and Canadian standards CAN/CGSB-3.517-2000 and CAN/CGSB 3.6-2000. The test method may also be applied to the quantitative determination of the ignition characteristics of blends of fuel oils containing biodiesel material, and diesel fuel oil blending components. 1.2 This test method measures the ignition delay and utilizes a constant volume combustion chamber with direct fuel injection into heated, compressed air. An equation converts an ignition delay determination to a derived cetane number (DCN). 1.3 This test method covers the ignition delay range from a minimum value of 35.0 DCN (ignition delay of 4.89 ms) to a maximum value of 59.6 DCN (ignition delay of 2.87 ms). The average DCN result for each sample in the ILS ranged from 37.29 (average ignition delay of 4.5894 ms) to 56.517 (average ignition delay of 3.0281 ms). 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Determination of Derived Cetane Number 40;DCN41; of Diesel Fuel Oilsmdash;Fixed Range Injection Period, Constant Volume Combustion Chamber Method

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers nominally anhydrous denatured fuel ethanol intended to be blended with unleaded or leaded gasolines at 1 to 10 volume8201;% for use as automotive spark-ignition engine fuel covered by Specification D4814. The significance of this specification is shown in Appendix X1. 1.2 The user is advised to check with the national regulatory agencies where the ethanol is denatured and used. The sulfur limit and denaturing formulas in this specification are acceptable for the U.S. market. Other countries or jurisdictions may allow or require other denaturing formulas and sulfur limits. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 The following safety hazards caveat pertains only to the method modification in 8.7 of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Specification for Denatured Fuel Ethanol for Blending with Gasolines for Use as Automotive Spark-Ignition Engine Fuel

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2014
实施

1.1 This specification covers the use of purchasing agencies in formulating specifications for purchases of aviation turbine fuel under contract. 1.2 This specification defines specific types of aviation turbine fuel for civil use in the operation and certification of aircraft and describes fuels found satisfactory for the operation of aircraft and engines. The specification can be used as a standard in describing the quality of aviation turbine fuels from the refinery to the aircraft. 1.3 This specification does not define the quality assurance testing and procedures necessary to ensure that fuel in the distribution system continues to comply with this specification after batch certification. Such procedures are defined elsewhere, for example in ICAO8201;9977, EI/JIG Standard8201;1530, JIG8201;1, JIG8201;2, API8201;1543, API8201;1595, and ATA-103. 1.4 This specification does not include all fuels satisfactory for aviation turbine engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification. 1.5 Aviation turbine fuels defined by this specification may be used in other than turbine engines that are specifically designed and certified for this fuel. 1.6 This specification no longer includes wide-cut aviation turbine fuel (Jet B). FAA has issued a Special Airworthiness Information Bulletin which now approves the use of Specification D6615 to replace Specification D1655 as the specification for Jet B and refers users to this standard for reference. 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

Standard Specification for Aviation Turbine Fuels

ICS
75.160.20 (Liquid fuels)
CCS
发布
2014
实施

1.1 This specification (see Note 1) covers grades of fuel oil intended for use in various types of fuel-oil-burning equipment under various climatic and operating conditions. These grades are described as follows: 1.1.1 Grades No. 1 S5000, No. 1 S500, No. 2 S5000, and No. 2 S500 are middle distillate fuels for use in domestic and small industrial burners. Grades No. 1 S5000 and No. 1 S500 are particularly adapted to vaporizing type burners or where storage conditions require low pour point fuel. 1.1.2 Grades No. 4 (Light) and No. 4 are heavy distillate fuels or middle distillate/residual fuel blends used in commercial/industrial burners equipped for this viscosity range. 1.1.3 Grades No. 5 (Light), No. 5 (Heavy), and No. 6 are residual fuels of increasing viscosity and boiling range, used in industrial burners. Preheating is usually required for handling and proper atomization. Note 1—For information on the significance of the terminology and test methods used in this specification, see Appendix X1.Note 2—A more detailed description of the grades of fuel oils is given in X1.3. 1.2 This specification is for the use of purchasing agencies in formulating specifications to be included in contracts for purchases of fuel oils and for the guidance of consumers of fuel oils in the selection of the grades most suitable for their needs. 1.3 Nothing in this specification shall preclude observance of federal, state, or local regulations which can be more restrictive. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.Note 3—The generation and dissipation of static electricity can create problems in the handling of distillate burner fuel oils. For more information on the subject, see Guide D4865.

Standard Specification for Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2013
实施

5.1 Motor O.N. correlates with commercial automotive spark-ignition engine antiknock performance under severe conditions of operation. 5.2 Motor O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines. 5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation: Values of k1, k2, and k3 vary with vehicles and vehicle populations and are based on road-octane number determinations. 5.2.2 Motor O.N., in conjunction with Research O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the road octane ratings for many vehicles, is posted on retail dispensing pumps in the United States, and is referred to in vehicle manuals. This is more commonly presented as: 5.3 Motor O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates. 5.4 Motor O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications. 5.5 Motor O.N. is utilized to determine, by correlation equation, the Aviation method O.N. or performance number (lean-mixture aviation rating) of aviation spark-ignition engine fuel.6 1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Motor octane number, including fuels that contain up to 258201;% v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested in a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The octane number scale is defined by the volumetric composition of primary reference fuel blends. The sample fuel knock intensity is compared to that of one or more primary reference fuel blends. The octane number of the primary reference fuel blend that matches the knock intensity of the sample fuel establishes the Motor octane number. 1.2 The octane number scale covers the range from 0 to 120 octane number, but this test method has a working range from 40 to 120 octane number. Typical commercial fuels produced for automotive spark-ignition engines rate in the 80 to 90 Motor octane number range......

Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2013
实施

1.1 This specification covers seven grades of diesel fuel oils suitable for various types of diesel engines. These grades are described as follows: 1.1.1 Grade No. 1-D S15—A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 15 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S15 fuel.2 1.1.2 Grade No. 1-D S500—A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 500 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S500 fuel.2 1.1.3 Grade No. 1-D S5000—A special-purpose, light middle distillate fuel for use in diesel engine applications requiring a fuel with 5000 ppm sulfur (maximum) and higher volatility than that provided by Grade No. 2-D S5000 fuels. 1.1.4 Grade No. 2-D S15—A general purpose, middle distillate fuel for use in diesel engine applications requiring a fuel with 15 ppm sulfur (maximum). It is especially suitable for use in applications with conditions of varying speed and load.2 1.1.5 Grade No. 2-D S500—A general-purpose, middle distillate fuel for use in diesel engine applications requiring a fuel with 500 ppm sulfur (maximum). It is especially suitable for use in applications with conditions of varying speed and load.2 1.1.6 Grade No. 2-D S5000—A general-purpose, middle distillate fuel for use in diesel engine applications requiring a fuel with 5000 ppm sulfur (maximum), especially in conditions of varying speed and load. 1.1.7 Grade No. 4-D—A heavy distillate fuel, or a blend of distillate and residual oil, for use in low- and medium-speed diesel engines in applications involving predominantly constant speed and load.Note 1—A more detailed description of the grades of diesel fuel oils is given in X1.2.Note 2—The Sxxx designation has been adopted to distinguish grades by sulfur rather than using words such as “Low Sulfur” as previously because the number of sulfur grades is growing and the word descriptions were thought to be not precise. S5000 grades correspond to the so-called “regular” sulfur grades, the previous No. 1-D and No. 2-D. S500 grades correspond to the previous “Low Sulfur” grades. S15 grades were not in the previous grade system and are commonly referred to as “Ultra-Low Sulfur” grades or ULSD. 1.2 This specification, unless otherwise provided by agreement between the purchaser and the supplier, prescribes the required properties of diesel fuels at the time and place of delivery. 1.2.1 Nothing in this specification shall preclude observance of federal, state, or local regulations which can be more restrictive.

Standard Specification for Diesel Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2013
实施

1.1 This specification (see Note 1) covers grades of fuel oil intended for use in various types of fuel-oil-burning equipment under various climatic and operating conditions. These grades are described as follows: 1.1.1 Grades No. 1 S5000, No. 1 S500, No. 2 S5000, and No. 2 S500 are middle distillate fuels for use in domestic and small industrial burners. Grades No. 1 S5000 and No. 1 S500 are particularly adapted to vaporizing type burners or where storage conditions require low pour point fuel. 1.1.2 Grades No. 4 (Light) and No. 4 are heavy distillate fuels or middle distillate/residual fuel blends used in commercial/industrial burners equipped for this viscosity range. 1.1.3 Grades No. 5 (Light), No. 5 (Heavy), and No. 6 are residual fuels of increasing viscosity and boiling range, used in industrial burners. Preheating is usually required for handling and proper atomization. Note 1—For information on the significance of the terminology and test methods used in this specification, see Appendix X1.Note 2—A more detailed description of the grades of fuel oils is given in X1.3. 1.2 This specification is for the use of purchasing agencies in formulating specifications to be included in contracts for purchases of fuel oils and for the guidance of consumers of fuel oils in the selection of the grades most suitable for their needs. 1.3 Nothing in this specification shall preclude observance of federal, state, or local regulations which can be more restrictive. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.Note 3—The generation and dissipation of static electricity can create problems in the handling of distillate burner fuel oils. For more information on the subject, see Guide D4865.

Standard Specification for Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2013
实施

5.1 This guide is intended for the developers or sponsors of new aviation gasolines or additives to describe the data requirements necessary to support the review of these new products by ASTM members. 5.2 This guide is not an approval process. It is intended to describe test and analysis requirements necessary to generate data to support specification development. This guide does not address the approval process for ASTM International standards. 5.3 This guide will reduce the uncertainty and risk to developers or sponsors of new aviation gasolines or additives by describing the test and analysis requirements necessary to proceed with the development of an ASTM International specification for aviation gasoline or specification revision for an aviation gasoline additive. 5.4 This guide does not purport to specify an all-inclusive listing of test and analysis requirements to achieve ASTM International approval of a specification or specification revision. The final requirements will be dependent upon the specific formulation and performance of the candidate fuel and be determined by the ASTM International task forces and committees charged with overseeing the specification development. 5.5 This guide does not describe data requirements of other approving authorities, such as national aviation regulatory authorities, or of other organizations or industry associations. However, the data generated in the conduct of the procedure may be useful for other purposes or other organizations. 5.6 Over 200 000 piston-engine aircraft rely on Specification D910 lead-containing aviation gasoline (avgas) for safe operation. There has been an increase in the research and development of alternatives to Specification D910 gasolines as a result of environmental and economic concerns. 1.1 This guide covers and provides procedures to develop data for use in research reports for new aviation gasolines or new aviation gasoline additives. 1.2 These research reports are intended to support the development and issuance of new specifications or specification revisions for these products. Guidance to develop ASTM International standard specifications for aviation gasoline is provided in Subcommittee J on Aviation Fuels Operating Procedures, Annex A6, “Guidelines for the Development and Acceptance of a New Aviation Fuel Specification for Spark-Ignition Reciprocating Engines.” 1.3 The procedures, tests, selection of materials, engines, and aircraft detailed in this guide are based on industry expertise to give appropriate data for review. Because of the diversity of aviation hardware and potential variation in fuel/additive formulations, not every aspect may be encompassed and further work may be required. Therefore, additional data beyond that described in this guide may be requested by the ASTM task force, Subcommittee J, or Committee D02 upon review of the specific composition, performance, or other characteristics of the candidate fuel or additive. 1.4 While it is beyond the scope of this guide, investigation of the future health and environmental impacts of the new aviation gasoline or new aviation gasoline additive and the requirements of environmental agencies is recommended. 1.5 Units—The values stated in SI units are to be regarded as the standard. No other uni......

Standard Guide for Evaluation of New Aviation Gasolines and New Aviation Gasoline Additives

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2013
实施

1.1 This specification covers the selection of fuels for gas turbines, excepting gas turbines used in aircraft, for the guidance of interested parties such as turbine manufacturers and the suppliers and purchasers of fuel oils. The specification sets forth the properties of fuels at the time and place of custody transfer to the user. 1.2 Three appendixes are provided for informational purposes only and do not constitute a requirement of this specification unless mutually agreed upon between the interested parties. 1.2.1 Appendix X1 describes the five grades of gas turbine fuels covered by this specification. Further, it states the significance of various test methods used in inspecting the fuels. 1.2.2 Appendix X2 discusses the sources of fuel contaminants and notes the significance of such contaminants in the operation of gas turbines and gas turbine fuel systems. The particular significance of trace metals in gas turbine fuels is noted. Upper limits of trace metals are recommended for the various grades of gas turbine fuels, but these recommended limits do not constitute a requirement of the specification unless mutually agreed upon by the interested parties. Limitations due to the use of used or recycled oil are also noted. Note 1—The gas turbine operator should consult Practice D4418 for methods of ensuring fuels of adequate cleanliness and for guidance on long-term storage of distillate fuels and on liquids from non-petroleum sources as gas turbine.Note 2—Nothing in this specification shall preclude observance of federal, state, or local regulations which may be more restrictive.Note 3—The generation and dissipation of static electricity can create problems in the handling of distillate gas turbine fuel oils. For more information on the subject, see Guide D4865.

Standard Specification for Gas Turbine Fuel Oils

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2013
实施

5.1 Ethers, alcohols, and other oxygenates can be added to gasoline to increase octane number and to reduce emissions. Type and concentration of various oxygenates are specified and regulated to ensure acceptable commercial gasoline quality. Drivability, vapor pressure, phase separation, exhaust, and evaporative emissions are some of the concerns associated with oxygenated fuels. 5.2 This test method is applicable to both quality control in the production of gasoline and for the determination of deliberate or extraneous oxygenate additions or contamination. 1.1 This test method covers the determination of ethers and alcohols in gasolines by gas chromatography. Specific compounds determined are methyl tert-butylether (MTBE), ethyl tert-butylether (ETBE), tert-amylmethylether (TAME), diisopropylether (DIPE), methanol, ethanol, isopropanol, n-propanol, isobutanol, tert-butanol, sec -butanol, n-butanol, and tert-pentanol (tert-amylalcohol). 1.2 Individual ethers are determined from 0.20 to 20.0 mass8201;%. Individual alcohols are determined from 0.20 to 12.0 mass8201;%. Equations used to convert to mass8201;% oxygen and to volume8201;% of individual compounds are provided. At concentrations lt;0.20 mass8201;%, it is possible that hydrocarbons may interfere with several ethers and alcohols. The reporting limit of 0.20 mass8201;% was tested for gasolines containing a maximum of 10 volume8201;% olefins. It may be possible that for gasolines containing gt;10 volume8201;% olefins, the interference may be gt;0.20 mass8201;%. Annex A1 gives a chromatogram showing the interference observed with a gasoline containing 10 volume8201;% olefins. 1.3 Alcohol-based fuels, such as M-85 and E-85, MTBE product, ethanol product, and denatured alcohol, are specifically excluded from this test method. The methanol content of M-85 fuel is considered beyond the operating range of the system. 1.4 Benzene, while detected, cannot be quantified using this test method and must be analyzed by alternate methodology (see Test Method D3606). 1.5 The values stated in SI units are to be regarded as standard. Alternate units, in common usage, are also provided to increase clarity and aid the users of this test method. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Determination of MTBE, ETBE, TAME, DIPE, tertiary-Amyl Alcohol and C1 to C4 Alcohols in Gasoline by Gas Chromatography

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2013
实施

5.1 Research O.N. correlates with commercial automotive spark-ignition engine antiknock performance under mild conditions of operation. 5.2 Research O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines. 5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation: Values of k1, k2, and k3 vary with vehicles and vehicle populations and are based on road-O.N. determinations. 5.2.2 Research O.N., in conjunction with Motor O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the Road octane ratings for many vehicles, is posted on retail dispensing pumps in the U.S., and is referred to in vehicle manuals. This is more commonly presented as: 5.2.3 Research O.N. is also used either alone or in conjunction with other factors to define the Road O.N. capabilities of spark-ignition engine fuels for vehicles operating in areas of the world other than the United States. 5.3 Research O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates. 5.4 Research O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications. 1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Research O.N., including fuels that contain up to 258201;% v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested using a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The O.N. scale is defined by the volumetric composition of PRF blends. The sample fuel knock intensity is compared to that of one or more PRF blends. The O.N. of the PRF blend that matches the K.I. of the sample fuel establishes the Research O.N. 1.2 The O.N. scale covers the range from 0 to 120 octane number but this test method has a working range from 40 to 120 Research O.N. Typical commercial fuels produced for spark-ignition engines rate in the 88 to 101 Research O.N. range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Research O.N. range.......

Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2013
实施

5.1 Regulations limiting the concentration of benzene and the total aromatic content of finished gasoline have been established for 1995 and beyond in order to reduce the ozone reactivity and toxicity of automotive evaporative and exhaust emissions. Test methods to determine benzene and the aromatic content of gasoline are necessary to assess product quality and to meet new fuel regulations. 5.2 This test method can be used for gasolines that contain oxygenates (alcohols and ethers) as additives. It has been determined that the common oxygenates found in finished gasoline do not interfere with the analysis of benzene and other aromatics by this test method. 1.1 This test method covers the determination of benzene, toluene, ethylbenzene, the xylenes, C9 and heavier aromatics, and total aromatics in finished motor gasoline by gas chromatography. 1.2 The aromatic hydrocarbons are separated without interferences from other hydrocarbons in finished gasoline. Nonaromatic hydrocarbons having a boiling point greater than n-dodecane may cause interferences with the determination of the C9 and heavier aromatics. For the C8 aromatics, p-xylene and m-xylene co-elute while ethylbenzene and o-xylene are separated. The C9 and heavier aromatics are determined as a single group. 1.3 This test method covers the following concentration ranges, in liquid volume %, for the preceding aromatics: benzene, 0.1 to 58201;%; toluene, 1 to 158201;%; individual C8 aromatics, 0.5 to 108201;%; total C9 and heavier aromatics, 5 to 308201;%, and total aromatics, 10 to 808201;%. 1.4 Results are reported to the nearest 0.018201;% by either mass or by liquid volume. 1.5 Many of the common alcohols and ethers that are added to gasoline to reduce carbon monoxide emissions and increase octane, do not interfere with the analysis. Ethers such as methyl tert-butylether (MTBE), ethyl tert-butylether (ETBE), tert-amylmethylether (TAME), and diisopropylether (DIPE) have been found to elute from the precolumn with the nonaromatic hydrocarbons to vent. Other oxygenates, including methanol and ethanol elute before benzene and the aromatic hydrocarbons. 1-Methylcyclopentene has also been found to elute from the precolumn to vent and does not interfere with benzene. 1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Determination of Benzene, Toluene, Ethylbenzene, p/m-Xylene, o-Xylene, C9 and Heavier Aromatics, and Total Aromatics in Finished Gasoline by Gas Chromatography

ICS
75.160.20 (Liquid fuels)
CCS
E31
发布
2013
实施



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号