核磁共振通俗演绎

上一篇 / 下一篇  2009-08-21 14:15:42/ 个人分类:核与磁

        核磁共振是自然界中的一种现象,即原子核可以吸收强磁场中存在的一定频率的电磁辐射。艾西德·艾萨克·瑞白 (Isidor Isaac Rabi),一位出生于澳大利亚的美国物理学家(1898 - 1988),于 1938 年最先发现磁共振现象。从那时起,磁共振开始被用于轻原子的探测(例如碳氢化合物中的氢原子),并成为一种研究人体的非破坏性方式。核磁共振 (NMR) 仪器可以直接控制并探测原子核的运动。

        许多原子核(并非全部)可被视为很小的条形磁铁,都有磁北极和磁南极。 原子核以南北磁极连线为轴,以恒定速率旋转。

        旋转条形磁铁在自然界中相当普遍。单个的铁原子、地球、太阳、多个行星和中子星等都属于旋转条形磁铁。与原子核相比,地球的地理北极(旋转轴)与北磁极并不完全重合,所以它是比较复杂的旋转条形磁铁。原子核的运转情况要好得多: 它们的磁极与地理磁极恰好重合。

        由单个质子组成的氢核具有磁性,而且它还是水、天然气和石油的重要组成成分。由于人类正在寻找碳氢化合物,所以对这些原子核尤为关注。

        通常,原子核的北极可以指向任意方向,如无外界干涉,它们的指向则没有限制。核磁共振测量法的第一步是通过放置一块大型磁铁来形成一个强磁场,然后将原子核磁体置于其中,使其按一定方式排列。这将使原子核排列成行,北极指向外部磁体的南极。磁性原子核很乐于被磁场重新排列。这会使它们处于一种舒适的状态,物理学家称之为平衡或低能。这就象是一个小孩懒洋洋地坐在操场的秋千上,哪儿也不想去。这儿就是他最开心的地方。

        核磁共振测量法的第二步是让物体移动。 这是通过另一磁场来完成的,而不是与原子核运动产生共振的那个磁场。

        这就象是前面说的那个荡秋千的懒小孩一样,推动着他,但不必太用力。每次他接近弧顶并向前荡时,轻轻地推一下。这种被称为共振的轻轻推动可以增强规律性的往复运动。原子核的运动亦是如此。 为使它们不指向大磁体,必须对其施加外力。由于原子核是旋转的,所以其运动方式很象陀螺仪或玩具陀螺。当陀螺仪或玩具陀螺笔直指向地球的重力场时,它只是旋转。如果它与重力场呈某一角度,就会做一种称为“旋进”的轨道运动。 旋进速度(远低于旋转速度)取决于陀螺仪的大小和形状,它的旋转速度及重力。

        当原子核偏离强磁场的方向时,它也做“旋进”运动。旋进速度取决于原子核的属性(旋转速率等)以及磁场强度 - 这与陀螺仪很类似。这些属性是保持不变的,所以只需知道磁场强度就可以准确得出旋进频率。也就是必须施加给原子核的推动频率,以使其偏离主磁场,产生旋进运动。推力来自第二个磁场,该磁场的时间变化率与旋进速率相等 - 即可以与原子核运动产生共振。 (核…磁…共振——是不是初具雏形了?)

        在前面那个荡秋千示例中,停止施加外力后,秋千在一段时间内仍将继续摆动。原子核也一样。 它们所需要的只是一次持续 10 微秒(没错,是微秒)的快速无线电脉冲,即可使其维持长达数秒(没错,是秒)的运动。

        即使您闭上眼睛,也能知道秋千还在摆荡。为什么?原来秋千上的小孩在大声喊叫个不停。

         这一次,磁性原子核的情形仍与此非常类似。只要它们脱离大磁场中的队列,或者说,不再保持平衡状态,它们会辐射出无线电波。每个原子核都象一个很小的无线电台。并且毫无疑问,核磁共振设备的一部分是一个无线电接收器,在原子核移动时,可以捕捉到它们发出的信号。 最早的核磁共振设备是二战时与雷达站一同建造的,在一套设备里,既有无线电发射机,又有接收机。

        在前面那个荡秋千示例中,停止施加外力后,秋千在一段时间内仍将继续摆动。但秋千上的小孩很不舒服。他不再保持平衡,而处于一种高能状态。这不是他的本性。由于各方面原因(与空气的摩擦,秋千与支撑结构连接处的摩擦),一段时间后秋千会逐渐慢下来。 但秋千上的小孩想尽快进入驰豫状态,于是他稍微收腿,让自己减速,直至他再次可以舒舒服服地坐在那里。

        原子核非常象这个小孩。通过无线电波可以让它运动,在无线电发射机停止发射后的一段时间内,它仍可继续运动,但不是最佳状态。 在核磁共振设备中,它会在永久磁场的导向下,找到一种方法逐渐回到平衡状态。

        但还有一个问题。原子核并没有脚。 它们如何减速?

        有多种方法可使原子核失去能量返回平衡状态。对于原子核处于液体分子(如水)的情况,一种途径就是撞击固体表面。每次分子撞击固体表面时,原子核都有机会返回到沿强磁场方向的平衡排列状态。 这就是…驰豫。 您看,即便是原子核也喜欢驰豫。

        在较大的孔隙里,液体分子有更多的空间移动而不会撞上孔壁,所以碰撞频率非常小。在岩石里,核磁共振驰豫取决于孔隙的尺寸:孔隙越大,核磁共振驰豫的时间越长。

        核磁共振对孔隙尺寸的灵敏度有两项简单但功能强大的应用。第一就是由孔隙尺寸决定的渗透性。更确切地说,渗透性与孔隙直径的平方成正比,所以人们希望它与核磁共振驰豫的平方也成正比。通过对数百种不同的岩石进行实验室测试,证明确实存在这种关系。

        核磁共振数据的第二项应用是确定孔隙尺寸的分布。由于在单个岩石内孔隙的尺寸变化很大,因此分布范围很广。 通过孔隙尺寸分布,地质学者可以得出大量有关岩石的信息——远胜于在显微镜下进行观察。


TAG:

 

评分:0

我来说两句

显示全部

:loveliness::handshake:victory::funk::time::kiss::call::hug::lol:'(:Q:L;P:$:P:o:@:D:(:)

日历

« 2024-05-04  
   1234
567891011
12131415161718
19202122232425
262728293031 

数据统计

  • 访问量: 3919
  • 日志数: 8
  • 文件数: 7
  • 建立时间: 2009-08-21
  • 更新时间: 2011-06-08

RSS订阅

Open Toolbar