总参量在环境分析中的应用

上一篇 / 下一篇  2008-06-17 16:28:02

考虑到可能污染的特定区域(例如:空气、水、土壤)化学物质的多样性,无论是从其复杂性还是花费上来说,分离、鉴别、测定全部污染物都是一项繁杂的任务。在许多情况下适当使用总参量能够极大地降低必要的检测量,因而能够快速评估污染的程度。

Taking into account the diversity of chemicals that can pollute a given environmental area(e.g.,air,water,and soil),the separation,identiflcation,and determination of all pollutants can be a daunting task with respect to both the complexity and the cost.Application of suitable total parameters could in many cases vastly reduce the number of necessary determinations,thus permitting faster assessment of the degree of pollution.

      近10年来化学分析发展很快,有许多新方法和仪器方面的技术被引入分析工作中来[1]。您可以指出一些重要领域,其范围和新型分析技术的重要性都以相当决的速度扩展,它们包括[2]

  (1)超纯物质的制备。此类物质中痕量和超痕量杂质浓度用9的位数来衡量。例如7N代表纯度为99.99999%,即其中全部杂质不得超过0.00001%,或0.1ppm。迄今为止最纯的合成物质是纯度为11N的锗,其中全部杂质不超过0.01ppb。

  (2)生物化学及基因工程。

  (3)环境保护。

  人们日益认识到环境分析和监测是环境科学的基础。分析和监测均不能解决所有环境问题,然而它们可作为有力工具,提供关于环境状况、治理和预防措施的效果以及某些制造技术对环境的影响等方面的信息。

  现代分析化学的亮点与仪器进步密切相关,该领域的成就导致不同分析设备在日常工作中的广泛使用,这些设备通常是高度集成的。微处理器控制,高度机械化,加上人工智能的应用,使得现代仪器越来越自动化。

  环境分析和监测中使用的分析方法可给出下列信息:

  (1)污染物的元素组成,这是其基本特征。这种信息可以利用诸如气相色谱联合多通道原子发射检测器(GC-AED)获取。

  (2)污染物分类L3[3]。根据国际理论化学和应用化学学会(IUPAC)的定义,分类分析可以确定与表征一种样品中给定元素存在的各种物理化学形式。可以给出两种分类分析:物理分类分析(化合物存在的各种形式)和化学分类分析(确定与表征含给定元素的所有化合物)。许多文献包含特定类型的化学分类的信息(例如:谱学、分布、基团、手性或个别分类)。

  (3)总参量表述所有污染物中或者污染物某一子群中给定元素的全部含量。迄今只发表了一篇文章讨论总参量评估各种环境区域的污染程度适用性[4]

  考虑到可能污染的特定区域(例如:空气、水、土壤)的化学物质的多样性,无论是从其复杂性还是花费上来说,分离、鉴别、测定全部污染物都是一项繁杂的任务。在许多情况下适当使用总参量能够极大地降低必要的检测量,因而能够快速评估污染的程度。然而必须强调的是,两种方法(分类分析和总参量测定)是充分互补的,不能将它们相互对立起来。

1历史回顾

  表示样品中有机物含量的两个总参量,用于水和废物分析已经很长时间了:化学耗氧量(COD)和生物耗氧量(BOD)。当然,这是由于测定有机全碳(TOC)的仪器的引入,推动了测定不同样品全组分含量的新方法的发展。早在1931年人们就在考虑测定TOC值,自那之后发表了许多致力于测定各种类型样品TOC值的仪器及方法方面的文章。

  TOC测定的重要性基于两个主要原因:1)TOC能方便地测量有机废水中的总污染物,以及地表和废水中有机物的生物降解度;2)TOC水平对衡量水和废物处理效率非常有用。同时传统参数(COD和BOD)具有明显的缺陷,限制了其使用。BOD的确定基于测定某一时段有机物中生物降解过程消耗的溶解氧量,测量的重现性值得怀疑,灵敏度也不好。另外,只有进行生物降解的化合物才对BOD有贡献。熔点高的有机物不能用该方法测定。COD需要使用昂贵、有毒的试剂,当样品中存在某些抗氧化的无机物或者熔点高的有机物时,可能得到不正确的结果。

  TOC可用来确定不同有机废水的污染程度:从电子工业和发电厂使用的高纯水到一般工业和城市的废水。典型TOC水平从开始低于1μg C/dM3(1ppb)到随后高于1000 mg/dm3 (1000 ppm)。

  近年来超纯水中TOC水平的测定变得尤其重要,即使水中含有痕量(1ppb或更低)的有机杂质也对制造工艺有害,包括不希望的氧化物沉积、粘着力改变导致的光阻层缺陷以及电性能的改变(如击穿电压降低和漏电流过高)。发电厂用水中存在有机物可加速腐蚀。医药工业(如输液的生产)用水中不能存在有机物(尤其是内毒素)。

  25年来测定TOC的基本方法没发生根本性的变化。样品中的有机物经由两种方法被氧化成CO2:低温湿法化学氧化(WCO)及高温催化氧化(HTCO),经常使用辅助手段(如紫外辐射)帮助氧化过程。该技术的详细综述见文献[4]

  表1示出总参量分类的一个例子,用于表征水及含有机物废水的污染程度。这种特殊分类是基于碳组分的测定,污染物中其它元素的类似分类也可做出。
 


2 在环境分析中的实际应用

  随着第一篇关于测定TOC的新方法、仪器及其在水和废物分析方面应用文章的发表,又有许多关于总参量在气态(室内和室外空气)及固态(土壤和沉积物)样品分析中应用文章的发表。表2概括了测定气态样品中总烃的技术,表3总结了环境分析及监测中使用的大量总参量的文献资料。必须强调的是,有时使用不同术语描述同一总参量,并且那些术语也经常是含糊不清的。 

 


 

3 结论

  文献资料表明大量的方法和仪器都可以用来测定不同聚集状态和来源样品的总参量。这些方法可以根据许多参数来划分,包括:

  (1)自动化程度。
  (2)操作模式(间歇式vs连续式)。
  (3)仪器类型(实验型vs工业型)。
  (4)进一步提高处理样品能力以增加最后结果的信息量。
  (5)对某一形式的指定测量要素(如CO2对于几乎所有含碳的物质),用作最后的测定技术。

  总参量测定是群分类的一个实例。考虑到环境样品中化学物质可能过剩,总参量测定是分析过程中有价值的第一步。如果要确定潜在的问题,需要采取进一步的措施,包括单一化合物的鉴定,这样一来,就成了个别分析的例子。

参考文献:

  • Namiesnik J. Trends in environmental analytics and monitoring. Crit Rev Anal Chem 2000; 30:221-69.
  • Namiesnik J. Application of analytics and monitoring in environmental studies (in Polish). Chem Inz Ekol 1998; 5:463-7 l .
  • Kot A, Namiesnik J. The role of speciation in analytical chemistry. Trends Anal Chem 2000; 19:69-79.
  • Namiesnik J. Total parameters characterizing environmental pollution. Methods and insffuments (in Polish). Chem Anal (Warsaw) 1988; 33:S35-60.
  • Bella D, Cavazzutti G, Petrucci M, Rossi C. Atmospheric pollution with organic substances alld their determination as total hydrocarbons (in Italian). Boll Chim Lab Prov 1976; 27:107-32.
  • Molhave L. The TVOC concept. In: Salthammer T, ed.Organic indoor air pollutants. Occunence, measurement, evaluation. Weinheim, Germany: Wiley-VCH, 1999:305-18.
  • Birch ME. Analysis of carbonaceous aerosols: interlaboratory comparison. Analyst 1998; 123:851-7.
  • Iwatsuki M, Kyotani T, Matsubara K. Fractional determination of elemental carbon and total soluble and insoluble organic compounds in airbome particulate matter by thermal analysis combined with extraction and heavy liquid separation. Anal Sci 1998; 14:321-6.
  • Fung YS, Dao KL. Determination of total carbon in air
    particulate matters by thermal combustion-ion chromatography. Intem J Environ Anal Chem 1998;69: 125-39.
  • Kawamoto K. TOX as a novel altemative index of dioxins in aue gas. Organohalogen Comp 1999; 40: 157-60.
  • Akimoto Y, Inouye Y. Behaviour of extractable organic halogens in a municipal solid waste incinerator and the relationship with that of polychorinated dibenzo-p-dioxins and polychlorinated dibenzofurnas. J Health Sci 1999; 45:256-61.
  • Rocha TAP, Oliveira ABP, Armando AC. Determination of total sulphur in landfiU gases using a quartz crystal microbalance. Int J Environ Anal Chem 2000; 75: 121-6.
  • Chen JM, Pan TC, Huang CW. A modified sealed oven-UV method of COD determination. Jpn J Toxicol Environ Health 1994; 40:338-43.
  • Kupka HJ, Stremming H, Spitaler M. Determination of organosulfur compounds in water (in German). LaborPtaxis Apr 1989; 270-8.
  • Wilke D, Geisler M, Hahn M, Matschiner H. Summary determination of organosulfur compounds (in Cerman). CLB-Chemie in Labor and Biotechnik 2000; 51: 13-17.
  • Randt C, Altenbeck R. Problems in the development of a method for the determination of the total amount of adsorbable organic sulfur compounds (AOS) in water/wastewater. Vom Wasser 1997; 88:217-25.
  • Lehnen H, Twiehaus T, Rieping D, Buscher W, Cammann K. Thermal desorption and atomic emission spectrometric determination of adsorbable organically bound elements for water analysis. Analyst 1998; 123:637-40.
  • Burkhardt MR, Brenton RW, Kammer JA, et al. Improved method for the determination of non-purgeable suspended organic carbon in natural water by silver filter filtration, wet chemical oxidation, and infrared spectrometry. Wat Resour Res 1999; 35:329-34.
  • Espinoza LH, Lucas D, LiHlejohn D, Kyauk S. Total organic carbon content in aqueous samples determined by near-IR spectroscopy. Appl SpecRosc 1999; 53: 103-7.
  • Winnett WK, Murphy MP. A novel sample introduction technique for combustion total organic carbon analysis in aqueous materials. Talanta 1994; 41: 1627-30.
  • Carniel A, Del Bianco C, Zanin N. Determination of organic compounds in water: correlation between the Kuebel method (permangamate oxidizability) and TOC (total organic carbon) (in Italian). Boll Chim Igien 1998; 49:223-6.
  • MacCraith B, Grattan KTV, Connolly D, Briggs R, Boyle WJO, Avis M. Cross comparison of techniques for the monitoring of total organic carbon (TOC) in water sources and supplies. Wat Sci Tech 1993; 28:457-63.
  • Van Leeuwen J, Drikas M, Bursill D, Nicholson B. Contamination of samples for DOC analysis. Water Jan/Feb 1997:12.
  • Zuercher F. Simultaneous determination of total purgeable organo-chlorine, -bromine and -nuorine compounds in water by ion-chromatography. In: Bjorseth A, Angeletti G, eds. Analysis of organic micropollutants in water. Dordrecht, The Netherlands: D. Riedel Publishing Co. 1981:272-6.
  • Melanson P, Retzik M. A second-generation TOC analysis system for high-purity water systems. Ultrapure Wat Apr 1994:76-9.
  • Cohen N. TOC as a replacement for the oxidizable substances test. Ultrapure Wat Apr 1994:48-9.
  • Sakamoto H, Taniyama J, Yonehara N. Determination of ultra-tace amounts of total mercmy by gold amalgamation-cold vapor AAS in geothermal water samples by using ozone as pretreatment agent. Anal Sci 1997; 13:771-5.
  • Pasturenzi M, Bianchi M, Muntau H. Measurement of AOX for the screening of halogenated organic compounds in water. Ann Chim 1997; 87:611-25.
  • Koschuh B, Montes M, Camuna JF, Pereiro R, Sanz-Medel A. Total organochloride and organobromide determinations in aqueous samples by microwave induced plasma-optical emission spectrometry. Microchim Acta 1998; 129:217-23.
  • Anderson DJ, Bloem TB, Higgins JV. Sub-sampling techllique for the determination of particulate-phase organic carbon in water. J Great Lakes Res 1998; 24:838-44.
  • Bronk DA, Lomas MW, GlibeH PM, Schuken ICI, Sanderson MP Total dissolved nitrogen analysis: comparisons between the persulfate, UV and high temperature oxidation mealods. Mar Chem 2000; 69: 163-78.
  • Escobar IC, Randall AA. Sample storage impact on the assimilable organic carbon (AOC) bioassay. Wat Res 2000; 34: 1680-6.
    33.Binde F, Ruttinger HH. Isolation and determination of dissolved organic sulphur compounds-development of the organic group parameter DOS. Fres J Anal Chem 1997; 357,411-15.
  • Gron C, Dybdahl HP. Determination of total organic halogens (TOX); bias from a non-halogenated organic compound. Environ Intern 1996; 22:325-9.
  • Sebastiano G, Rebizzi V, BeneHi E, et al. Total halogenated organic (TOX) measurement in ground waters Reated with hypochlorite and chlorine dioxide. Initial results of an experiment caHied out in Emilia-Romagna (Italy). Wat Res 1995; 29:1207-9.
  • Cappelli F, Goulden PD, Lawrence J, MacGregor DJ. Determination of the adsorption eHiciency of file organics carbon adsorbable standard method by dissolved organic carbon analysis. J Environ Sci Health 1978; AI3: 167-76.
  • Zwiener C, Frimmel FH. Application of headspace GC/MS screening and general parameters for the analysis of polycyclic aromatic hydrocarbons in groundwater samples. Fres J Anal Chem 1998; 360:820-3.
  • Schiff SL, Aravena R, Trumbore SE, Hinton MJ, Elgood R, Dillon PJ. Expon of DOC from forested catchments on the Precambrian Shield of central Ontario: clues from 13C and 14C. Biogeochemistry 1997; 36:43-65.
  • Mitra S, Dickhut Rlvl. Three-phase modelling of polycyclic aromatic hydrocaxbon associ.ation wi8t pore-water-dissolved organic carbon. Environ Toxicol Chem 1999; 18: l144-8.
  • Vogl J, Heumann KG. Development of an ICP-IDMS method for dissolved organic carbon determinations and its application to chromatographic hactions of heavy metal complexes with humic substances. Anal Chem 1998;
  • FtJrhacker M. Measurements of POX and/or VOX in groundwater as a basis for load estimation (in German).6steneichische Wasser-und AbfallwiHschaft 1998; 128-36.
  • crowaler J, Lo FB, Rawlings MW, Wright B. Determination of organically bound sulfur in swamp and tenestrial waters by continuous now oxidation and ion chromatography. Environ Sci Technol 1995; 29:849-55.
  • Meyer JL, Bruce Wallace J, Eggert SL. Leaf litter as a source of dissolved organic carbon in streams. Ecosystems 2000; l :240-9.
  • Tao S. Spatial and temporal variation in DOC in the Yichun River, China. Wat Res 1998; 32:2205-lO.
  • Kuchler IL, Miekeley N, Forsberg BR. Molecular mass distribations of dissolved organic carbon and associated metals in waters from Rio Negro and Rio Solim8es. Sci Total Environ 1994; 156:207-16.
  • Rostad CE, Leenheer JA, Daniel SR. Organic carbon and nitrogen content associated with coDoids and suspended particulates from the Mississippi River and some of its tributaries. Environ Sci Technol 1997; 3 l :3218-25.
  • Pasturenzi M, Bianchi M, Pelusio F, Muntau H.Investigations into the contents of AOX in waters of the Olona River (in Italian). Boll Chim Igien 1997; 48:85-90.
  • Luitjens M, Schwanenberg W, Kupka H. Colnmn method for AOX determination (in German). LaborPraxis Jan 1992:37-41.
  • Cremm TJ, Kaplan LA. Dissolved carbohydrate concentration, composition, and bioavailability to microbial heterotrophs in stream water. Acta Hydrochim Hydrobiol 1998; 26:167-71.
  • Baralkiewicz D, Kraska M, Siepak J. The content of DOC,POC and TOC in Lobelian Lakes. Pol J Environ Stnd 1996;5(6): 17-22.
  • Baralkiewicz D, Siepak J. The contents and variability of TOC, POC and DOC concentration in natural waters.Pol J Environ Stud 1994; 3(2):15-18.
  • Siepak J. Total organic carbon (TOC) as a sum parameter of water pollution in selected Polish rivers (Vistula, Odra,and Wana). Acta Hydrochim Hydrobiol 1999; 27:282-5.
  • Baralkiewicz D, Siepak J. Levels and seasonal variation of dissolved and suspended organic carbon in G6reckie Lake (in Polish). Morena 1995; 3:73-8.
  • Rossi G, Savarese M. On-line determination of total niaogen in natural sea water samples by alkaline persulphate oxidation. Mar Pollut Bull 1997; 35: 174-5.
  • Doval MD, Fraga F, Perez FF. Determination of dissolved organic niUogen in seawater using Kjeldahl digestion after inorganic nitrogen removal. Oceanologica Acta 1997;20:713-20.
  • Ji L, Lu XK. Study on determination of DIC in seawater by coulometric method. Chin J Oceanol Limnol 1997;15:357-62.
  • Wang JT, Zhaxlg ZB, Liu LS. Determination of dissolved organic carbon in seawater using UV/persulphate method and HTCO method. Chin J Oceanol Limnol 1997; 15:25-31.
  • Borsheim KY, Myklestad SM, Sneli J. Monthly profiles of DOC, mono- and polysaccharides at two locations in the Trondheimsfjord (Norway) during two years. Mar Chem 1999; 63:255-72.
  • Thingstad TJ, Hagstrom A, Rassoulzadegan F. Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop7 Limnol Oceanogr 1997;42,398-404.
  • McKenna JH, Doering PH. Measurement of dissolved organic carbon by wet chemical oxidation with persnlfate: inauence of chloride concentration and reagent volume. Mar Chem
  • Moran SB, Charette MA, Pike SM, Wicklund CA. Differences in seawater particulate organic carbon concentration samples collected using small- and large- volume methods: the importance of DOC adsorption to the filter blank. Mar Chem 1999; 67:33-42.
  • Lahl U, Zeschmar-Lahl B. TOC limits in the eluent from solid wastes (in German). Korrespondenz-Abwasser 1998; 45:1321-9.
  • Ferguson JF. Anaerobic and aerobic treatment for AOX removal. Wat Sci Tech 1994; 29: 149-62.
  • Bornhardt C, Drewes JE, Jekel M. Removal of organic halogens (AOX) from municipal wastewater by powdered activated carbon (PAC)/activated sludge (AS) treatment. Wat Sci Tech 1997; 35:147-53.
  • Fiehn 0, Wegener G, Jochimsen J, Jekel M. Analysis of the ozonation of 2-mercaptobenzothiazole in water and tannery wastewater using sum parameters, liquid- and gas chromatography and capillary electrophoresis. Wat Res 1998; 32:1075-84.
  • SchIQder HF. Characterization and monitoring of persistent toxic organics in the aquatic environment. Wat Sci Tech 1998; 38:151-8.
  • Rudolph J. AOX elimination and production by oxidation with H2O2/Fe2+ and HzOznJV tin Gennan). Korrespondenz Abwasser 199iL; 41: 1791L-801.
  • Fabinski W, Gnlnewald A, Hielscher B , Wolff C. Continuous on-line measurement of organic carbon and bound nitrogen in process and wastewater using the Tocas instnlment (in German). GWF-Wasser/Abwasser 1993;134:613-19.
  • Tsai CT, Kuo CT, Lin ST. Analysis of organic halides in hospital waste sludge disinfected using sodium hypochlorite(NaOCl). Wat Res 1999; 33:778-84.
  • 6berg G. Chloride and organic chlorine in soil. Acta Hydrochim Hydrobiol 1998; 26: 137-44.
  • 6berg G, Gron C. Sources of organic halogens in space forest soil. Environ Sci Technol 1998; 32: 1573-9.
  • Tao S, Lin B. Water soluble organic carbon and its measmement in soil and sediment. Wat Res 2000; 34: 175l- 5.
  • Zink-Nielsen I. Intercalibration of methods for chemical analysis of se(liments; results from intercalibrations of methods for determining loss on ignition, COD, total niRogen, total phosphoms, and heavy metals in sediments. Vatten 1977; l.77: 14-20.
  • Lohse L, Kloosterhuis RT, de Stigter HC, Helder W, Raaphorst W, van Weering TCE. Carbonate removal by acidification causes loss of nitrogenous compounds in continental margin sediments. Mar Chem 2000; 69: 193-201 .
  • Luczak D, Janquin MA, Kupka A. Simple standard procedure for the routine determination of organic matter in marine sediment. Hydrobiologia 1997; 345:87-94.
  • Goni M, Ruttenberg KC, Eglinton TI. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 1997; 389:275-8.
  • Burdige DJ, Gardner KG. Molecular weight distribution of dissolved organic carbon in marine sediment pore waters.Mar Chem 1998; 62:45-64.
  • Kawano M, Kitamura S, Falandysz J, Tatsukawa R.Occunence of extractable organic halogens (EOX) in Polish marine sediments. Proc 19th Conf Baltic Oceanographers, Sopot, Aug 1994:725-3 I .
  • Kannan K, Kawano M, Kashima Y, Matsui M, Giesy JP.Extractable organohalogens (EOX) in sediment and biota collected at an estuarine marsh near a former chloralkali facility. Environ Sci Technol 1999; 33: 1004-8.
  • Suominen KP, Wittmann C, K}ihk8nen MA, Salkinoja-Salonen MS. Organic halogen, heavy metals and biological activities in pristine and pulp mill recipient lake sediments.Wat Sci Tech 1998; 37:79-86.
  • Kahkonen MA, Suominen KP, Manninen PICG, Sancinoja-Salonen MS. IOO Years of sediment accumulation history of organic halogens and heavy metals in recipient and nomecipient lakes of palping indusUy in Finland. Environ Sci Technol 1998; 32: 1741-6.
  • Suominen KP, Jaakkola T, Elomaa E, Hakulinen R, Salkinoja-Salonen MS . Sediment aQcumulation of organic halogens in pristine forest lakes. Environ Sci Pollut Res 1997; 4:21-30.
  • Heron G, Barcelona MJ, Anderson ML, Christensen TH. Determination of nonvolatile organic carbon in aquifer solids after carbonate removal by sulfurous acid. Ground Wat 1997; 35:6-11.
  • EI-Rehaili AM. Implications of activated sludge kinetics based on total or soluble BOD, COD and TOC. Environ Technol 1994; 15:1161-72.
  • Stachel B, Behringer G, Schacht U. Determination of organohalogen compounds and organic carbon as sum parameter in electronic waste. Fres J Anal Chem 1994; 350:375-8.
  • Rubli S, Medilanski E, Belevi H. Characterization of total organic carbon in solid residues provides insight into sludge incineration processes. Environ Sci Technol 2000; 34: 1772-7.
  • Kawano M, Ueda M, Matsui M, Kashima Y, Matsuda M, Wakimoto T. Extractable organic halogens (EOX: Cl, Br, and I), polychlorinated naphthalenes and polychlorinated dibenzo-P-dioxins and dibenzofnrans in ashes from incinerators located in Japan. Organohal Com 1998; 36:221-4.
  • Hutcheson MS, Pederson D, Anastas ND, Fitzgerald J,Silverman D. Beyond TPH. Health based evaluation of peRoleum hydrocarbons exposures. Reg Toxicol Pharmacol 1996; 25:85-101.

  • TAG: 环境分析

     

    评分:0

    我来说两句

    显示全部

    :loveliness::handshake:victory::funk::time::kiss::call::hug::lol:'(:Q:L;P:$:P:o:@:D:(:)

    Open Toolbar