17.020 计量学和测量综合 标准查询与下载



共找到 1259 条与 计量学和测量综合 相关的标准,共 84

1.1 This practice is intended to assist the various technical committees in the use of uniform methods of indicating the number of digits which are to be considered significant in specification limits, for example, specified maximum values and specified minimum values. Its aim is to outline methods which should aid in clarifying the intended meaning of specification limits with which observed values or calculated test results are compared in determining conformance with specifications. 1.2 This practice is intended to be used in determining conformance with specifications when the applicable ASTM specifications or standards make direct reference to this practice. 1.3 Reference to this practice is valid only when a choice of method has been indicated, that is, either absolute method or rounding method. 1.4 The system of units for this practice is not specified. Dimensional quantities in the practice are presented only as illustrations of calculation methods. The examples are not binding on products or test methods treated. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

ICS
17.020
CCS
发布
2022-04-01
实施

Integrity Measurement Management Regulations Part 5: Shopping Malls and Supermarkets

ICS
17.020
CCS
A 50
发布
2022-03-16
实施
2022-09-01

本文件规定了民用水表、电能表、燃气表(以下简称“民用三表”)计量争议处置的一般要求,以及争议提出与调查、争议检定/校准、争议调解和计量差错核算等内容。

Disposal specification of measurement objection for civilian water meter, electric energy meter and gas meter

ICS
17.020
CCS
N7810
发布
2022-03-01
实施
2022-03-01

本文件规定了采用数字图像相关算法测量物体变形的基本原理、测量前准备、测量方法和测量报告。

Digital image correlation optical measurement specification

ICS
17.020
CCS
M745
发布
2022-02-01
实施
2023-03-17

Metrology verification, calibration data interaction specification

ICS
17.020
CCS
A 50
发布
2021-12-28
实施
2022-01-01

3.1 锂离子电池(lithium ion battery ) 锂离子电池,简称电池,是一种利用锂离子作为导电离子,在阳极和阴极之间移动,通过化学能和电能相互转化实现充放电的电池。 [GB/T 19596-2017,定义3.3.1.2.1] 3.2 锂离子电池单体(lithium ion battery cell) 锂离子电池单体,简称电池单体,是将化学能与电能相互转换的基本锂离子电池单元装置,由正极、负极、隔膜、电解质、壳体和端子等组成。 [GB/T 36276-2018,定义3.1.1]  3.3电池平均比热容(battery mean specific heat capacity) 平均比热容是单位质量的电池温度升高1K所需的热量,该热量是在规定温度范围内的平均热量。 3.4  荷电状态(state of charge) 当前电池中按照规定放电条件可以释放的容量占可用容量的百分比。 [GB/T19596—2017,定义3.3.3.2.5]  3.5 电池平均温度(mean battery temperature) 基于电池表面多点温度测量进行算术平均所获得的温度记为电池平均温度,简称电池温度。  3.6 电池平均温升(mean battery temperature rise) 电池平均温度与环境温度之差即为电池平均温升,简称电池温升。 3.7 电池热损 (battery heat loss) 在给定环境温度下将包裹高效绝热材料的电池加热至高温后自然冷却,对应电池平均温度下降的热力学能下降即为该电池平均温升下的电池热损。 3.8 校准量热法(calibrated calorimetry) 在加热或者产热条件下,根据电池的表面温度上升、校准该过程中电池的热量损失、并确定电池在完全绝热条件下的总温度上升或者产热率。 3.9 高效绝热材料 导热系数在0.05 W/(m·K)或者以下的材料称为高效绝热材料。 3.10 符号 c ?比热容(J/(kg??C)) I?加热电流 (A) L0 ? 高效绝热材料厚度(mm) L1、L2、L3 ? 电池在不同方向的尺寸(mm) m?质量(kg) Q?加热器热量(J) t?加热后时刻t(s) Ta? 环境温度(?C) ΔTave?电池平均温升(?C) ΔTL1?电池加热过程因热损导致的平均温升(温降)(?C) ΔTL2?电池均温过程因热损导致的平均温升(温降)(?C) Tmax?电池平均温度上限值(?C) Ucool?电池平均温升速率(?C/s) ?h? 加热功率(W)  ?1?加热时间(s) ?2?均温与测量时间(s) ???均温与测量过程的固定时间段(s)

The test method of mean specific heat capacity for lithium ion battery cell

ICS
17.020
CCS
M745
发布
2021-12-27
实施
2021-12-28

根据RB/T 214—2017《检验检测机构资质认定能力评价 检验检测机构通用要求》的规定,机动车检验机构作为检验检测机构,应根据需要建立和保持应用评定测量不确定度的程序。在实际应用中,机动车检验机构在开展检测设备期间核查、检测结果质量控制与分析、实验室间比对、能力验证、测量审核、实验室内设备比对和人员比对等工作时,均需进行不确定度评定。 本文件依据GB 3847—2018《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》、GB 18285—2018《汽油车污染物排放限值及测量方法(双怠速法及简易工况法)》和GB 38900—2020《机动车安全技术检验项目和方法》,并参考CNAS—GL023:2018《汽车和摩托车检测领域典型参数的测量不确定度评估指南及实例》编写而成,旨在为机动车检验机构对检测结果进行不确定度评定提供指导,并给出部分检测结果评定实例。

Method and Illustration of Uncertainty Evaluation Test Result for Vehicle Inspection Body

ICS
17.020
CCS
M745
发布
2021-12-24
实施
2021-12-24

Integrity Measurement Management Regulations Part 7: Bottled Liquefied Petroleum Gas Filling Stations

ICS
17.020
CCS
A 50
发布
2021-12-20
实施
2022-02-01

1.1 This practice establishes a uniform standard for computing the within-laboratory quantitation estimate associated with Z % relative standard deviation (referred to herein as WQEZ %), and provides guidance concerning the appropriate use and application. 1.2 WQEZ % is computed to be the lowest concentration for which a single measurement from the laboratory will have an estimated Z % relative standard deviation (Z % RSD, based on within-laboratory standard deviation), where Z is typically an integer multiple of 10, such as 10, 20, or 30. Z can be less than 10 but not more than 30. The WQE10 % is consistent with the quantitation approaches of Currie (1)2 and Oppenheimer, et al. (2). 1.3 The fundamental assumption of the WQE is that the media tested, the concentrations tested, and the protocol followed in developing the study data provide a representative and fair evaluation of the scope and applicability of the test method, as written. Properly applied, the WQE procedure ensures that the WQE value has the following properties: 1.3.1 Routinely Achievable WQE Value—The laboratory should be able to attain the WQE in routine analyses, using the laboratory’s standard measurement system(s), at reasonable cost. This property is needed for a quantitation limit to be feasible in practical situations. Representative data must be used in the calculation of the WQE. 1.3.2 Accounting for Routine Sources of Error—The WQE should realistically include sources of bias and variation that are common to the measurement process and the measured materials. These sources include, but are not limited to intrinsic instrument noise, some typical amount of carryover error, bottling, preservation, sample handling and storage, analysts, sample preparation, instruments, and matrix. 1.3.3 Avoidable Sources of Error Excluded—The WQE should realistically exclude avoidable sources of bias and variation (that is, those sources that can reasonably be avoided in routine sample measurements). Avoidable sources include, but are not limited to, modifications to the sample, modifications to the measurement procedure, modifications to the measurement equipment of the validated method, and gross and easily discernible transcription errors (provided there is a way to detect and either correct or eliminate these errors in routine processing of samples). 1.4 The WQE applies to measurement methods for which instrument calibration error is minor relative to other sources, because this practice does not model or account for instrument calibration error, as is true of most quantitation estimates in general. Therefore, the WQE procedure is appropriate when the dominant source of variation is not instrument calibration, but is perhaps one or more of the following: 1.4.1 Sample Preparation, and especially when calibration standards do not go through sample preparation. 1.4.2 Differences in Analysts, and especially when analysts have little opportunity to affect instrument calibration results (as is the case with automated calibration). 1.4.3 Differences in Instruments (measurement equipment), such as differences in manufacturer, model, hardware, electronics, sampling rate, chemical-processing rate, integration time, software algorithms, internal signal processing and thresholds, effective sample volume, and contamination level. 1.5 Data Quality Objectives—For a given method, one typically would compute the WQE for the lowest RSD for which the data set produces a reliable estimate. Thus, if possible, WQE10 % would be computed. If the data indicated that the method was too noisy, so that WQE10 % could not be computed reliably, one might have to compute instead WQE20 %, or possibly WQE30 %. In any case, a WQE with a higher RSD level (such as WQE50 %) would not be considered, though a WQE with RSD < 10 % (such as WQE5 %) could be acceptable. The appropriate level of RSD is based on the data quality objective(s) for a particular use or uses. This practice allows for calculation of WQEs with user selected RSDs less than 30 %. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the 1 This practice is under the jurisdiction of ASTM Committee D19 on Water and is the direct responsibility of Subcommittee D19.02 on Quality Systems, Specification, and Statistics. Current edition approved Nov. 15, 2021. Published March 2022. Originally approved in 2012. Last previous edition approved in 2013 as D7783 – 13. DOI: 10.1520/D7783-21. 2 The boldface numbers in parentheses refer to the list of references at the end of this standard. Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. 1 Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Practice for Within-laboratory Quantitation Estimation (WQE)

ICS
17.020
CCS
发布
2021-11-15
实施

4.通用要求 5.尺寸定义与方法 6.

Definition and method of anthropometric measurements for clothing for physically disabled persons

ICS
17.020
CCS
C183
发布
2021-11-01
实施
2021-11-01

Uncertainty of measurement -- Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). Supplement 1: Propagation of distributions using a Monte Carlo method

ICS
17.020
CCS
发布
2021-10-27
实施
2021-10-27

本文件规定了后备蓄电池安全监控系统的术语和定义、缩略语、系统组成和工作环境、基本要求、技术要求、试验方法、检验规则、标志、包装、运输及贮存及质量承诺。 本文件适用于后备阀控铅酸蓄电池安全监控系统(以下简称蓄电池安全监控系统)。

Standby battery safety monitoring system

ICS
17.020
CCS
C401
发布
2021-10-19
实施
2021-10-28

Calculation method for gas replenishment and replenishment due to gas metering errors

ICS
17.020
CCS
A50
发布
2021-10-14
实施
2021-12-14

标识载体应用一般要求包含但不限于以下内容: ——推荐使用一维条码、二维条码、无源RFID、NFC标签作为数据载体,建立与被标识对象的物理关联; ——采用一维条码、二维条码标签作为载体时,通常将标识编码整体写入。采用无源RFID、NFC标签作为载体时,将根据标签空口协议和标签存储结构的不同进行具体规定; ——可在载体上明确标注“工业互联网标识”字样的文字标识; ——载体应提供设备可读取的符号或载体,或提供可供人视读的数字符号; ——在标识对象的全生命周期中,应保证标识载体与标识对象之间的物理关联,对于一维条码、二维条码载体,建议但不限于选用直接印刷、打印、激光打标、电化学蚀刻在标识对象的明显位置,建议优先选择标牌位置附近安装标识载体;对于无源RFID、NFC标签,建议但不限于选用反应胶粘接、铆钉铆接、铅封、嵌入本体等方式。对于有凸出位置的仪器仪表产品,应避开凸出位置,以避免标签在使用过程中受到碰撞。

Identification and Resolution Of Industrial Internet—Specification Of Instrument Parts Coding and Identification

ICS
17.020
CCS
I653
发布
2021-09-30
实施
2021-11-12

1 范围 本文件规定了工业互联网标识解析仪器仪表规定了工业互联网标识解析仪器仪表基本数据集的数据集数据结构和数据元目录,具体包括工业互联网标识解析核心元数据的描述方法、核心元数据模型、标识解析数据元描述及元数据和数据元扩展原则和方法。 本文件适用于工业互联网标识解析应用服务对仪器仪表数据的处理、交换与共享等活动。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2312-1980 信息交换用汉字编码字符集 基本集 GB/T 4208-2017 外壳防护等级(IP代码) GB/T 4754-2017 国民经济行业分类 GB/T 7408-2005  数据元和交换格式信息交换日期和时间表示法 GB/T 18391.1-2009 信息技术 元数据注册系统(MDR) 第1部分:框架 GB/T 19710-2005 地理信息 元数据 GB/T 26816-2011 信息资源核心元数据 GB 32100-2015 法人和其他组织统一社会信用代码编码规则 GB/T 36377-2018 计量器具识别编码 GB/T 38154-2019 重要产品追溯 核心元数据 GB/T 38155-2019 重要产品追溯 追溯术语 3 术语和定义 GB/T 38154-2019和GB/T 38155-2019界定的以及下列术语和定义适用于本文件。 3.1  数据元 data element 用一组属性描述定义、标识、表示和允许值的数据单元。 [GB/T 18391.1—2009,定义 3.3.8] 3.2  元数据 metadata 定义和描述其他数据的数据。 [GB/T 18391.1—2009,定义 3.2.16] 3.3  核心元数据 core metadata 描述标识解析数据基本属性的元数据元素和元数据实体。 [GB/T 26816—2011,定义3.5] 4 描述方法 4.1 中文名称 指元数据元素或元数据实体的中文名称。 4.2 英文名称 指元数据元素或元数据实体的英文名称。 4.3 定义 给出特性的解释和说明。 4.4 值域 允许值的集合。 4.5 数据类型 说明元数据元素、元数据实体、值域的数据类型,例如复合型、数值型等。

Identification and Resolution for Industrial Internet- Basic dataset of Instrument

ICS
17.020
CCS
I653
发布
2021-09-30
实施
2021-11-12

1 范围 本文件规定了工业互联网标识解析仪器仪表领域应用服务平台在运营机构、平台性能与技术要求、服务内容与要求、平台运行管理、平台技术管理等的要求。 本文件适用于工业互联网标识解析仪器仪表领域应用服务平台的运营管理。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 35273 信息安全技术 个人信息安全规范 3 术语和定义 3.1  运营服务 是指工业互联网标识解析仪器仪表领域应用服务平台(下文称仪表平台)所提供的与工业互联网应用相关的服务。 3.2  工业互联网相关设备 是指与工业互联网仪器仪表标识体系建设相关的编码、赋码、标识识别以及网络接入相关的设备与配套软件和硬件产品。 3.3  平台运营机构 是指平台建设运营单位或基于仪表平台构建专项服务的服务商。 4 平台运营机构 4.1 平台建设运营单位应具备互联网域名注册服务机构许可资质。平台服务商应获得平台建设运营单位授权,符合相关法律、法规和规章规定的平台运行条件。 4.2 平台建设运营单位应建立与平台服务规模相适应的呼叫中心(客户服务中心),提供7×24小时电话、网络受理服务,确保服务接通率不低于95%。 4.3 平台建设运营单位应建立专业完善的平台运维中心,组织相关专业技术人员为工业互联网标识解析仪器仪表领域应用服务平台提供技术支撑 4.4 平台服务商应满足本文件规定的应用服务内容的能力、组织和人员。运营范围包含工业互联网标识解析仪器仪表平台服务领域的相关业务。

Identification and Resolution Of Industrial Internet-Application Service Platform Operation Specification of Instrument

ICS
17.020
CCS
I653
发布
2021-09-30
实施
2021-11-12

接口设计原则 接口设计的基本原则包括但不限于: a) 安全性:应提供多种安全可靠的技术手段,保证服务接口的安全; b) 开放性:应采用通用的接口设计标准,保证与其他系统的互联互通; c) 灵活性:应能根据业务变化,灵活调整接口容量与性能; d) 松耦合:应避免服务提供方的业务系统对服务接口实现的依赖性。 接口分类要求 工业互联网标识解析仪器仪表应用服务平台应对外提供安全类接口、数据类接口、服务类接口和应用类接口以及标识类接口、事件类接口和运营类接口。

Identification and Resolution Of Industrial Internet—Application Service Platform Interface of Instrument

ICS
17.020
CCS
I653
发布
2021-09-30
实施
2021-11-12

前言 III 1  范围 1 2  规范性引用文件 1 3  术语和定义 1 4  总体要求 2 5  基础资料 2 5.1  一般规定 2 5.2  自然地理资料 2 5.3  社会经济资料 3 5.4  水资源及其开发利用资料 3 5.5  草地资源与饲草资料 3 5.6  牲畜资料 3 5.7 相关规划与成果资料 3 6  灌溉人工草地生态阈值 3 6.1  计算方法 3 6.2  主要计算参数 3 7  水草畜平衡计算 5 7.1  水草平衡计算 5 7.1.1  灌溉人工草地种类与种植结构 5 7.1.2  灌溉人工草地需水量计算 5 7.1.3  灌溉人工草地可供水量分析 5 7.1.4  灌溉人工草地适宜规模确定 5 7.2  草畜平衡计算 5 7.2.1  标准干草计算 5 7.2.2  适宜载畜量计算 7 8  水草畜平衡分析评价 7 8.1  水草畜平衡分析方法 7 8.2  水草畜平衡评价 8 附录A (资料性) 牧区分布情况 9

Technical specifications for calculation and evaluation of water, grass and livestock balance in pastoral areas

ICS
17.020
CCS
XXXXX
发布
2021-09-29
实施
2021-12-01

前言 III 1  范围 1 2  规范性引用文件 1 3  术语和定义 1 4  工作原理、组成和基本参数 1 4.1  工作原理 1 4.2  组成 2 5  一般规定 3 6  技术要求 3 6.1  外观 3 6.2  环境适应性 3 6.3  测量准确度 4 6.4  测量重复性 4 6.5  测量能力与抗电导率干扰性 4 6.6  电源适应性 4 6.7  工作电流 4 6.8  绝缘性能 4 6.9  防腐蚀性 4 6.10  外壳防护等级 5 6.11  机械环境适应性 5 7  试验方法 5 7.1  试验要求 5 7.2  主要试验设备及试剂 5 7.3  试验方法内容 6 8  检验规则 7 8.1  出厂检验 7 8.2  型式检验 8 9  标志和使用说明书 8 9.1  标志 8 9.2  使用说明书 8 10  包装、运输、贮存 8 10.1  包装 9 10.2  运输 9 10.3  贮存 9 11  安装、运行和维护 9 11.1  安装要求 9 11.2  运行和维护要求 9 附录A(资料性)  标准土样的制备 11 A.1  土壤选取 11 A.2  土壤预处理 11 A.3  土样制备要求 11 A.4  试验土样制备步骤 11 附录B(资料性)  氯化钾溶液的制备 12 B.1  空白试样的制备 12 B.2  1 ‰氯化钾溶液的制备 12 附录C(资料性)  水在不同温度下的介电常数理论值 13

Time Domain Reflectometry Soil Moisture Monitor

ICS
17.020
CCS
XXXX
发布
2021-09-29
实施
2021-12-01

The Smart Meter-Part 1:Function requirements

ICS
17.020
CCS
发布
20210924
实施
20210924



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号