发布新日志

  • 细胞培养及常见的几个问题

    实验技术 发布于 2009-11-11 09:36:23

      谷氨酰胺在细胞培养中重要吗?它在溶液中不稳定吗? L-谷氨酰胺在细胞培养时是重要的。脱掉氨基后,L-谷氨酰胺可作为培养细胞的能量来源、参与蛋白质的合成和核酸代谢。L-谷氨酰胺在溶液中经过一段时间后会降解,但是确切的降解率一直没有最终定论。L-谷氨酰胺的降解导致氨的形成,而氨对于一些细胞具有毒性。

      GlutaMAX-I是什么?培养细胞如何利用GlutaMAX-I?这个二肽有多稳定? GlutaMAX-I 二肽是一个L-谷氨酰胺的衍生物,其不稳定的alpha-氨基用L-丙氨酸来保护。一种肽酶逐渐裂解二肽,释放L-谷氨酰胺供利用。 GlutaMAX-I二肽非常稳定,即使在121磅灭菌20分钟,GlutaMAX-I 二肽溶液有最小的降解,如果在相同条件下,L-谷氨酰胺几乎完全降解。 什么培养基中可以省去加酚红?酚红在培养基中用作PH值的指示剂:中性时为红色,酸性时为黄色,碱性时为紫色。

      研究表明,酚红可以模拟固醇类激素的作用,(特别是雌激素)。为避免固醇类反应,培养细胞,尤其是哺乳类细胞时,用不加酚红的培养基。由于酚红干扰检测,一些研究人员在做流式细胞检测时,不使用加有酚红的培养基。如何用台盼兰计数活细胞?用无血清培养基把细胞悬液稀释到200~2000个/毫升,在0.1毫升细胞悬液中加0.1毫升0.4%的台盼兰溶液。轻轻混匀,数分钟后,用血球计数板计数细胞。活细胞排斥台盼兰,因而染成蓝色细胞是死细胞。

      培养基中丙酮酸钠的作用是什么?丙酮酸钠可以作为细胞培养中的替代碳源,尽管细胞更倾向于以葡萄糖作为碳源,但是,如果没有葡萄糖的话,细胞也可以代谢丙酮酸钠。二价离子抑制胰蛋白酶活性吗?使用胰蛋白酶时加入EDTA的目的是什么?二价离子的确抑制胰蛋白酶活性。EDTA用来螯合游离的镁离子和钙离子,以便保持抑制胰蛋白酶的活性。建议胰蛋白酶处理细胞前,用EDTA清洗细胞,以消除来自培养基中所有的二价离子。 室温下配制的Tris-HCl溶液,在37℃使用时PH值是多少?缓冲液PH值随温度变化而变化。下表列出了50mM Tris-HC 溶液在4℃,25℃,37℃时,不同PH值。 50mM Tris-HC 溶液在4℃,25℃,37℃时,不同PH值 4°C 25°C 37°C 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 8.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 如何从T25瓶中转移sf9细胞?能用胰蛋白酶消化吗?我们推荐使用脱落细胞的方法,此技术破坏性最小,生活力最高。通过使用巴斯德吸液管,让细胞上培养基流动。

      作为一种选择你也可以轻轻拍打培养瓶。只有在绝对必要的情况下,才使用胰酶消化细胞。 胰酶消化一个T25瓶的sf9细胞: 1. 去除培养基。 2. 用2ml 1xPBS(足以覆盖细胞表面)洗涤细胞,去除PBS。 3. 加入2ml 1x胰酶EDTA(恰好覆盖细胞表面)。 4. 37 ℃孵育5到10分钟。在仪器下检测看到5分钟后它们正在向上移动。 5. 向细胞中加入2ml 细胞培养液,移入锥形管,用2ml培养液洗瓶壁,移入同一锥形管中。(培养基中的FBS终止了胰酶的活性。) 6. 离心(1100rpm)沉淀细胞。去除培养基。 7. 用新的培养基重新悬浮细胞。传代。 39.在Sf9, Sf21, 和high Five细胞悬浮培养时,肝素的使用量是多少? 为了防止悬浮培养细胞聚集的形成,使用肝素浓度为10单位/毫升细胞悬液。在重新冻存sf9细胞前,它可以传多少代?随着传代的次数的增加,它的感染能力会降低吗?通常情况当细胞经过30次传代后,应该返回冻存。无论什么时候计数时,都应该检查细胞活力。

      如果超过95%的细胞保持有活力和在大约30小时左右加倍,细胞仍然可以使用。如果活力和加倍时间下降,它们的感染力将不在是有效的。 贮存在冰箱中的瓶口已开的培养基,在放置几天后颜色变紫? 这主要是由于在暴露到周围的CO2水平时,碳酸氢纳导致了pH值的上升。您可以在使用前松开瓶口,在CO2培养箱孵育培养基10-15分钟,来校正溶液的 pH值(确定松开瓶口以保证气体交换)。 细胞培养基偶然被冻,可否继续使用?如果细胞培养基偶然被冻,您应该熔化培养基并观察是否有沉淀产生。如果没有沉淀产生,培养基可以正常使用,如果出现沉淀,只能丢弃这些培养基。无血清培养与有血清培养使用的抗生素量一样吗?当在无血清培养基中添加抗生素时,降低至少在有血清培养基中所使用浓度的50%。血清蛋白会结合和灭活一些抗生素。在无血清培养条件下,抗生素不被灭活,可能对于细胞达到毒性水平。 培养基中添加了血清和抗生素后,可长期保存吗?一旦您在新鲜培养基中添加了血清和抗生素时,您应该在两到三周内使用它。

      因为一些抗生素和血清中的基本成分在解冻后就开始降解。培养基及其它添加物和试剂可反复冻融吗?大部分添加物和试剂最多可以冻融3次,如果次数更多都会在包含蛋白的溶液引起一定水平的降解和沉淀,将会影响它的性能。为什么要在溶解的一周内使用贮存在4℃冰箱中的液体胰蛋白酶溶液? 胰蛋白酶在4℃就可能开始降解,如果在室温下放置超过30分钟,就会变得不稳定。保存血清最好的方法? 我们建议血清应保存在-5℃至-2O℃。若存放于4℃时,请勿超过一个月。若一次无法用完一瓶,建议无菌分装血清至恰当的灭菌容器内,再放回冷冻。如何解冻血清才不会使产品质量受损? 将血清从冷冻箱取出后,先置于2~8℃冰箱使之融解,然后在室温下使之全融。但必须注意的是,融解过程中必须规则地摇晃均匀。血清解冻后发现有絮状沉淀物出现,该如何处理? 血清中沉淀物的出现有许多种原因,但最普遍的原因是由于血清中脂蛋白的变性所造成,而血纤维蛋白(形成凝血的蛋白之一)在血清解冻后,也会存在于血清中,亦是造成沉淀物的原因之一。但这些絮状沉淀物,并不影响血清本身的质量。若欲去除这些絮状沉淀物,可以将血清分装至无菌离心管内,以400g稍微离心,上清液即可接着加入培养基内一起过滤。最好不使用过滤的方法去除这些絮状沉淀物,因为它可能会阻塞过滤膜。

      为什么要热灭活血清? 加热可以灭活补体系统。激活的补体参与溶解细胞事件,刺激平滑肌收缩,细胞和血小板释放组胺,激活淋巴细胞和巨噬细胞。在免疫学研究,培养ES细胞、平滑肌细胞时,推荐使用热灭活血清。 有必要做热灭活吗? 实验显示,经过正确处理的热灭活血清,对大多数的细胞而言是不需要的。经此处理过的血清对细胞的生长只有微小的促进,或完全没有任何作用,甚至通常因为高温处理影响了血清的质量,而造成细胞生长速率的降低。而经过热处理的血清,沉淀物的形成会显著的增多,这些沉淀物在倒置显微镜下观察,像是“小黑点”,常常会让研究者误以为是血清遭受污染,而把血清放在37℃环境中,又会使此沉淀物更增多,使研究者误认为是微生物的分裂扩增。

      若非必须,可以不需要做热处理这一步。不但节省时间,更确保血清的质量! 为什么储存在冰箱中的胎牛血清会出现沉淀? 有些胎牛血清产品没有预老化,储存在2-8℃时,血清中的各种蛋白和脂蛋白(如冷凝集素、纤维蛋白原、玻粘连蛋白等)可能聚集而形成沉淀或可见的混浊。这应该不会影响血清的质量。推荐在-20℃储存胎牛血清,避免反复冻融。 如何避免沉淀物的产生? 我们建议您在使用血清的时候,注意下列的操作: (1)解冻血清时,请按照所建议的逐步解冻法(-20℃至4℃至室温),若血清解冻时改变的温度太大(如-20℃至37℃),非常容易产生沉淀物。 (2)解冻血清时,请随时将之摇晃均匀,使温度及成分均一,减少沉淀的发生。 (3)请勿将血清置于37℃太久。若在37℃放置太久,血清会变得混浊,同时血清中许多较不稳定的成分也会因此受到损害,而影响血清的质量。 (4)血清的热灭活非常容易造成沉淀物的增多,若非必要,可以无须做此步骤。 (5)若必须做血清的热灭活,请遵守56℃,30分钟的原则,并且随时摇晃均匀。温度过高,时间过久或摇晃不均匀,都会造成沉淀物的增多。

  • 细胞凋亡

    实验技术 发布于 2008-03-25 15:50:36

  • 蛋白质印迹(Western blotting)方法原理和优化

    thereyoube 发布于 2008-11-05 08:24:54

    抽滤

    抽滤是一种直接将蛋白质转移到膜上的方法。利用真空使溶解的样品滤过膜,蛋白质吸附到膜上,同时样品中其它成分被真空抽走。另外,也可直接将样品点在膜表面使之干燥。随后可对固定在膜上的蛋白质进行分析。

    点印记和狭缝印记是抽滤方法的两种变型,用多支管装置将样品加到膜上成点状或狭缝图样。这些方法可用于快速定性筛选大量样品或定量分析类似样品,尤其是测试复杂分析中实验参数的适用性。

    另一种抽滤方法的变型是格栅免疫印迹,这种方法适用于高度平行的样品分析,当样品量及其优先并且不能用常规方法如ELISA进行分析时使用。格栅免疫印迹可用于表征变态反应原-特异性抗体应答,只需最小量的病人血清。

    当准备抽滤印迹膜时,要考虑以下方面:

    去污剂可以抑制蛋白吸附到膜上。用于样品溶解和漂洗的缓冲液所含去污剂不应超过0.05%,并且仅当必要时才能加入。

    样品体积应足以覆盖每个孔中的膜面积,但所含蛋白量不应超过膜的结合能力。

    含较多颗粒的样品可能堵塞膜孔,而高黏度样品将降低流速。所以在结合前先通过预过滤或离心除去颗粒,只将上清加到膜上。而粘性样品要用缓冲液稀释。

    Western印迹

    Western印迹含一系列步骤,包括:

    (1) 用聚丙烯酰胺凝胶分离蛋白样品。

    (2) 将胶上的蛋白转移到膜上。

    (3) 鉴定膜上特定蛋白。

    下面将从理论和实践方面讨论Western印迹方法。

    用1-D或2-D凝胶分离复杂蛋白质混合物

    印迹前分离复杂蛋白质混合物的最常见方法是一维(1-D)SDS-PAGE电泳,它根据蛋白质的分子量进行分离。有时用非变性电泳分离天然蛋白质。尽管这种方法通常缺乏变性电泳的分辨率,但当蛋白须保留生物活性时非常有用。

    二维(2-D)凝胶电泳用于分析细胞、组织、和体液蛋白质的组成,是现代蛋白质组学的关键技术。2-D免疫印迹可提供分子量和等电点信息,并可用于区分翻译后修饰产生的不同蛋白质形式。有些情况下只进行1-D电泳分离也可用免疫印迹对蛋白分型。

    分子量标准

    在凝胶中加入分子量标准或标记物可以在电泳分离后估计感兴趣蛋白质的大小。有两种类型的分子量标准:未染色和预染色。未染色分子量标准通常由天然或重组的纯化蛋白混合物组成。在凝胶或膜上显示其位置需要染色步骤。预染标准允许在电泳过程中监测蛋白分离,也可以在随后的印迹步骤中指示转移效率。然而,它们比较昂贵且加入染料会影响蛋白迁移率。预染标准在确定分子量时可能不够精确,并且蛋白质上附加的染料在转移时会影响它们吸附到膜上的能力。

    聚丙烯酰胺浓度

    凝胶中聚丙烯酰胺浓度可以是均一浓度或是梯度浓度。最常见的聚丙烯酰胺浓度为10%,最适合分离10-150KD范围内的蛋白质。若要分析未知蛋白或许要更宽的分离范围,推荐使用梯度胶。例如:4-12%Tris-glycine凝胶适合于30-200KD蛋白质的分离,而10-20%凝胶则能成功地分离6-15KD的蛋白质。SDS-PAGE凝胶通常为1.0到1.5mm厚;但蛋白转印最好使用更薄的胶。

    凝胶电泳缓冲液

    最常见的凝胶电泳缓冲液由Tris-甘氨酸或Tris-tricine组成。缓冲液可以包含0.1%去污剂,通常是SDS。Tris-甘氨酸凝胶可用于分离很宽分子量范围(6-200KD)的蛋白质,并可与变性或非变性条件相容。Tris-tricine最适于分离小分子蛋白质(<10KD), 加样之前还需要还原变性。两种缓冲系统都与蛋白质转印PVDF膜兼容。Tris-乙酸缓冲液有时被用来分离大分子蛋白。

    将蛋白质从凝胶转移到膜

    蛋白质从凝胶转移到膜上的过程中同时保持它们的相对位置和分辨率,这被称为印迹。印迹可以以三种不同的方式实现:

    简单扩散:将膜放在凝胶上,同时放一沓干滤纸在膜上,并在滤纸上放置重物以加快扩散过程。这种方法可用于将蛋白质从一块凝胶上转移到多个膜上,同一凝胶可得到几个印迹膜。扩散法的主要缺点是不能定量转移,与电转比较只能转移25-50%的蛋白质。

    真空辅助溶剂流动:用泵的吸力将分离的蛋白质从凝胶转移到膜上,高低分子量的蛋白质都可以用这种方法转移;然而,分子量小于14KD的蛋白质需要用较小孔径的膜(0.2um),因为它们不易被0.45um膜吸附。很少从聚丙烯酰胺凝胶中真空转印蛋白质,而从琼脂糖中转移核酸则常用此法。

    电洗脱或电转移:最常用的转移方法,与扩散或真空印迹相比,其主要优点是速度和转移更完全。

    电转移方法

    两种常用的电转移方法是湿转和半干转。两者的原理完全相同,只是用于固定胶/膜叠层和施加电场的机械装置不同。

    湿转是一种传统方法,将胶/膜叠层浸入缓冲液槽然后加电压。这是一种有效方法但比较慢,需要大体积缓冲液且只能用一种缓冲液。另外用这种方法转移2-D电泳中常规使用的大胶比较困难。湿转系统一般在恒压条件下进行,转移过程中混合缓冲液保持电流相对恒定。

    半干转移,用浸透缓冲液的多层滤纸代替缓冲液槽。因为电极板直接与滤纸接触,使凝胶中电场强度尽可能大以快速高效转移。与湿转相比,这种方法又快(15-45分钟)又好。多数半干转移方法使用一种以上的缓冲系统,可以同时高效转移大小不同的蛋白。然而,半干印迹系统因缓冲液较少不适于较长时间转移。对于大2-D胶的印迹,半干转移是理想选择。半干印迹仪一般使用恒流条件,转移过程中电压逐渐增加。半干转移系统中,滤纸和膜切成和凝胶相同大小,这样电流必须通过凝胶,否则,在凝胶边缘处滤纸重叠将导致电流短路。两种转移系统中都必须注意防止在滤纸、凝胶和膜之间的任何地方存在气泡。气泡阻碍转移并在印迹膜上产生“秃斑”(即非转移区)。

    转移缓冲液

    转移缓冲液提供电极之间的电连接,必须能够导电。同时它也提供一种化学环境保证蛋白溶解,而不需担心蛋白质在转移过程中不能吸附到膜上。常规配方可满足多数蛋白样品的需要。多数缓冲液在转移过程中产生热量。针对此原因,很多湿转装置配备嵌入式冷却线圈。湿转也可在冷室中进行,缓冲液使用前可预冷。半干转移中电极板起到散热器功能。但它们的散热能力有限,一般半干转移不能进行太长时间。

    传统转移缓冲液由缓冲系统和甲醇组成。Towbin缓冲液,一种Tris-甘氨酸缓冲液,常用于湿转系统。该缓冲液PH为8.3,比大多数蛋白质的等电点(pI)要高。蛋白质带净负电荷并向阳极迁移。因为缓冲液在槽中混合,转移过程中离子分布相对稳定。

    半干系统使用三缓冲液系统。使用三种缓冲液是因为转移是等速电泳过程,蛋白质在前导离子和尾随离子之间迁移。三种缓冲液是:

    ?? 阳极缓冲液Ⅰ:0.3M Tris, PH 10.4

    ?? 阳极缓冲液Ⅱ:25mM Tris, PH 10.4

    ?? 阴极缓冲液:25mM Tris, 40mM ε-氨基乙酸,PH 9.4

    阳极缓冲液Ⅰ中和阳极板表面产生的过量质子。阳极缓冲液Ⅱ含与阳极缓冲液Ⅰ相同的PH,但Tris浓度降低到25mM。阴极缓冲液含ε-氨基乙酸,转移过程中作为尾随离子,随着蛋白穿透凝胶迁移到阳极不断被消耗掉。通常不推荐用单缓冲液代替三缓冲液系统。单缓冲系统中整个凝胶转移有不一致的趋势,且经常转移不彻底。

    尽管上述缓冲液系统适用于大多数蛋白转移,文献中还有很多适于不同应用的变化类型。最明显的变化之一是推荐10mM CAPS缓冲液(PH 11)用于蛋白质测序。在使用Edman化学法进行自动蛋白质测序时,Towbin缓冲液以及凝胶电泳缓冲液中的甘氨酸会引起高背景。改变缓冲液成分可以显著降低这种影响。对缓冲强度和组成的任何修饰都应非常注意,确保转移装置不会过热。

    准备蛋白质鉴定膜

    干燥

    转移完成以后,在继续染色或免疫检测程序之前应将PVDF膜完全干燥。干燥可提高蛋白吸附到PVDF聚合物上的能力,有助于降低随后分析过程中的解吸。印迹膜干燥后就变得不透明了,这种光学变化是一种表面现象,可以掩盖截留在深部孔中的水分,应按照推荐时间干燥印迹膜,以确保所有液体从膜的孔结构中蒸发出来。蛋白转移后干燥的PVDF膜可长时间保存,这对膜没有不利影响(4℃可保存2周,-20℃可保存2个月,-70℃可保存更长时间)。然而,在非控制条件下长期保存可能使有些蛋白对化学变化(如氧化、脱酰胺、水解)敏感。推荐在低温下长期保存。一旦干燥后,在进行任何分析之前,应将膜在100%甲醇中浸泡润湿。

    蛋白质显像

    染色

    染色是显示印迹膜上蛋白质的一种简单方法。染色可用于:验证蛋白质已经转移到膜上,确定各泳道加样量是否相等

    评价整体转移效率,尤其是使用新缓冲液系统或蛋白样品时。有多种染料可以使用,如有机染料(丽春红、酰胺黑、坚牢绿、考马斯亮蓝),荧光染料(荧光胺、香豆素)和胶体微粒(金、银、铜、铁或印度黑墨汁)。这些染料可分为可逆和不可逆染料。通常不可逆染料的灵敏度最佳,但它干扰或无法对蛋白进行进一步分析。不可逆染料的实例有酰胺黑和考马斯亮蓝。可逆染料尽管灵敏度较低,但它允许评估印迹膜后从膜上将其洗除。最常用的可逆蛋白染料是立春红。如果靶蛋白丰度太低,则无法用染色法检测到,但对于较高丰度蛋白,染色法通常可以体现蛋白的转移情况。

    用于印迹膜的新荧光染料高度灵敏且可与下游免疫检测、Edman测序和质谱相容。在用显色、荧光或化学发光法进行免疫检测之前,可使用Sypro Ruby和Sypro Rose蛋白印迹染料(分子探针),它们的灵敏度可达约12ng/带。

    下表列出检测Western印迹膜上蛋白时最常用的染料:

    Western印迹常用染料及其特性检测试剂 大致灵敏度(蛋白/点) 可逆性(与免疫检测的相容性)

    丽春红S 5ug 是

    坚牢绿FC 5ug 是

    CPTS 1ug 是

    Sypro Ruby 1-2ug 是

    Sypro Ruse 1-2ug 是

    酰胺黑 10B 1ug 否

    考马斯亮蓝 R-250 500ng 否

    印度黑墨汁 100ng 否

    胶体金 4ng 否

    透视

    透视是一种专用于PVDF膜的显像方法,它首先应用于Immobilon-P转印膜。该方法基于一种假设,即转移蛋白覆盖的PVDF膜部分能在20% 甲醇中润湿,而周围未结合蛋白的PVDF膜区域则不能。PVDF膜润湿的部分变得可透光,可用背光显示蛋白带并拍照存档。

我的存档

数据统计

  • 访问量: 0
  • 建立时间: 2017-07-15
  • 更新时间: 2017-07-15

RSS订阅

Open Toolbar