发布新日志

  • 高效液相色谱法的应用

    vvyouttjean 发布于 2008-08-13 22:47:20

    高效液相色谱法的应用远远广于气相色谱法。它广泛用于合成化学、石油化学、生命科学、临床化学、药物研究、环境监测、食品检验及法学检验等领域。

    一. 在食品分析中的应用

    1.食品营养成分分析:蛋白质、氨基酸、糖类、色素、维生素、香料、有机酸(邻苯二甲酸、柠檬酸、苹果酸等)、有机胺、矿物质等;

    2.食品添加剂分析:甜味剂、防腐剂、着色剂(合成色素如柠檬黄、苋菜红、靛蓝、胭脂红、日落黄、亮蓝等)、抗氧化剂等;

    食品污染物分析:霉菌毒素(黄曲霉毒素、黄杆菌毒素、大肠杆菌毒素等)、微量元素、多环芳烃等。

    二. 在环境分析中的应用

    多环芳烃(特别是稠环芳烃)、农药(如氨基甲酸脂类,反相色谱)残留等。

    三. 在生命科学中的应用

    HPLC技术目前已成为生物化学家和医学家在分子水平上研究生命科学、遗传工程、临床化学、分子生物学等必不可少的工具。其在生化领域的应用主要集中于两个方面:

    1. 低分子量物质,如氨基酸、有机酸、有机胺、类固醇、卟啉、糖类、维生素等的分离和测定。

    2. 高分子量物质,如多肽、核糖核酸、蛋白质和酶(各种胰岛素、激素、细胞色素、干扰素等)的纯化、分离和测定。

    过去对这些生物大分子的分离主要依赖于等速电泳、经典离子交换色谱等技术,但都有一定的局限性,远远不能满足生物化学研究的需要。因为在生化领域中经常要求从复杂的混合物基质,如培养基、发酵液、体液、组织中对感性趣的物质进行有效而又特异的分离,通常要求检测限达ng级或pg级,或pmol,fmol,并要求重复性好、快速、自动检测;制备分离、回收率高且不失活。在这些方面,HPLC具有明显的优势。

    四. 在医学检验中的应用

    体液中代谢物测定;药代动力学研究;临床药物监测:

    1. 合成药物:抗生素、抗忧郁药物(冬眠灵、氯丙咪嗪、安定、利眠宁、苯巴比妥等)、黄胺类药等。

    2. 天然药物生物碱(吲哚碱、颠茄碱、鸦片碱、强心甙)等

    五.在无机分析中的应用

    阳、阴离子的分析等。

  • 高效液相色谱法

    vvyouttjean 发布于 2008-08-22 19:19:23

    高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。

    1.对仪器的一般要求

    所用的仪器为高效液相色谱仪。色谱柱的填料和流动相的组分应按各品种项下的规定.常用的色谱柱填料有硅胶和化学键合硅胶。后者以十八烷基硅烷键合硅胶最为常用,辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料,用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。注样量一般为数微升。除另有规定外,柱温为室温,检测器为紫外吸收检测器。 在用紫外吸收检测器时,所用流动相应符合紫外分光光度法(附录Ⅳ A)项下对溶剂的要求。 正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进样量、检测器的灵敏度等,均可适当改变, 以适应具体品种并达到系统适用性试验的要求。一般色谱图约于20分钟内记录完毕。

    2.系统适用性试验

    按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子.

    (1) 色谱柱的理论板数(n) 在选定的条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图,量出供试品主成分或内标物质峰的保留时间t<[R]>(以分钟或长度计,下同,但应取相同单位)和半高峰宽(W<[h/2]> ),按n=5.54(t<[R]>/W<[h/2]>)<2>计算色谱柱的理论板数,如果测得理论板数低于各品种项下规定的最小理论板数,应改变色谱柱的某些条件(如柱长、载体性能、色谱柱充填的优劣等),使理论板数达到要求。 (2) 分离度 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R)的计算公式为: 2(t<[R2]>-t<[R1]>) R= ──W<[1]>+W<[2]> 式中 t<[R2]>为相邻两峰中后一峰的保留时间; t<[R1]>为相邻两峰中前一峰的保留时间; W<[1]>及W<[2]>为此相邻两峰的峰宽。 除另外有规定外,分离度应大于1.5。

    (3) 拖尾因子 为保证测量精度,特别当采用峰高法测量时,应检查待测峰的拖尾因子(T)是否符合各品种项下的规定,或不同浓度进样的校正因子误差是否符合要求。拖尾因子计算公式为: W<[0.05h]> T=────── 2d<[1]> 式中 W<[0.05h]>为0.05峰高处的峰宽; d<[1]>为峰极大至峰前沿之间的距离。 除另有规定外,T应在0.95~1.05间。 也可按各品种校正因子测定项下,配制相当于80%、100%和120%的对照品溶液,加入规定量的内标溶液,配成三种不同浓度的溶液,分别注样3次,计算平均校正因子,其相对标准偏差应不大于2.0%。

    3.测定法

    定量测定时,可根据样品的具体情况采用峰面积法或峰高法。但用归一法或内标法测定杂质总量时,须采用峰面积法。

    (1) 面积归一化法 测定供试品(或经衍生化处理的供试品)中各杂质及杂质的总量限度采用不加校正因子的峰面积归一法。计算各杂质峰面积及其总和,并求出占总峰面积的百分率。但溶剂峰不计算在内。色谱图的记录时间应根据各品种所含杂质的保留时间决定,除另有规定外,可为该品种项下主成分保留时间的倍数。

    (2) 主成分自身对照法 当杂质峰面积与成分峰面积相差悬殊时,采用主成分自身对照法。在测定前,先按各品种项下规定的杂质限度,将供试品稀释成一定浓度的溶液作为对照溶液,进样,调节检测器的灵敏度或进样量,使对照溶液中的主成分色谱峰面积满足准确测量要求。然后取供试品溶液,进样,记录时间,除另有规定外,应为主成分保留时间的倍数。根据测得的供试品溶液的各杂质峰面积及其总和并和对照溶液主成分的峰面积比较,计算杂质限度。

    (3) 内标法测定供试品中杂质的总量限度 采用不加校正因子的峰面积法。取供试品,按各品种项下规定的方法配制不含内标物质的供试品溶液,注入仪器,记录色谱图I;再配制含有内标物质的供试品溶液,在同样的条件下注样,记录色谱图Ⅱ。记录的时间除另有规定外,应为该品种项下规定的内标峰保留时间的倍数,色谱图上内标峰高应为记录仪满标度的30%以上,否则应调整注样量或检测器灵敏度。 如果色谱图Ⅰ中没有与色谱图Ⅱ上内标峰保留时间相同的杂质峰,则色谱图Ⅱ中各杂质峰面积之和应小于内标物质峰面积(溶剂峰不计在内)。如果色谱图Ⅰ中有与色谱图Ⅱ上内标物质峰保留时间相同的杂质峰,应将色谱图Ⅱ上的内标物质峰面积减去色谱图Ⅰ中此杂质峰面积,即为内标物质峰的校正面积;色谱图Ⅱ中各杂质峰总面积加色谱图Ⅰ中此杂峰面积,即为各杂质峰的校正总面积,各杂质峰的校正总面积应小于内标物质峰的校正面积。

    (4) 内标法加校正因子测定供试品中某个杂质或主成分含量 按各品种项下的规定,精密称(量)取对照品和内标物质,分别配成溶液,精密量取各溶液,配成校正因子测定用的对照溶液,取一定量注入仪器,记录色谱图,测量对照品和内标物质的峰面积或峰高,按下式计算校正因子: A<[s]>/m<[s]> 校正因子(f)=─ A<[r]>/m<[r]> 式中 A<[s]>为内标物质的峰面积或峰高; A<[r]>为对照品的峰面积或峰高; m<[s]>为加入内标物质的量; m<[r]>为加入对照品的量。 再取各品种项下含有内标物质的供试品溶液,注入仪器,记录色谱图,测量供试品(或其杂质)峰和内标物质的峰面积或峰高,按下式计算含量: A<[x]> 含量(m<[x]>)=f×──A<[s]>/m<[s]> 式中 A<[x]>为供试品(或其杂质)峰面积或峰高; m<[x]>为供试品(或其杂质)的量; f、A<[s]>和m<[s]>的意义同上。 当配制校正因子测定用的对照溶液和含有内标物质的供试品溶液使用同一份内标物质溶液时,则配制内标物质溶液不必精密称(量)取。

    (5) 外标法测定供试品中某个杂质或主成分含量 按各品种项下的规定,精密称(量)取对照品和供试品,配制成溶液,分别精密取一定量,注入仪器,记录色谱图,测量对照品和供试品待测成分的峰面积(或峰高),按下式计算含量: A<[x]> 含量(m<[x]>)=m<[r]>×── A<[r]> 式中各符号意义同上 由于微量注射器不易精确控制进样量,当采用外标法测定供试品中某杂质或主成分含量时,以定量环进样为好。

我的存档

数据统计

  • 访问量: 0
  • 建立时间: 2018-07-02
  • 更新时间: 2018-07-02

RSS订阅

Open Toolbar