发布新日志

  • X射线衍射分析

    Chloe 发布于 2014-05-05 10:36:23

      X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。

      X射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。衍射X射线满足布拉格(W.L.Bragg)方程:2d

      X射线衍射的产生

      sinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。

      理论发展

      1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示:

    2dsinθ=nλ

      式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。

      运动学衍射理论

      Darwin的理论称为X射线衍射运动学理论。该理论把衍射现象作为三维Fraunhofer衍射问题来处理,认为晶体的每个体积元的散射与其它体积元的散射无关,而且散射线通过晶体时不会再被散射。虽然这样处理可以得出足够精确的衍射方向,也能得出衍射强度,但运动学理论的根本性假设并不完全合理。因为散射线在晶体内一定会被再次散射,除了与原射线相结合外,散射线之间也能相互结合。Darwin不久以后就认识到这点,并在他的理论中作出了多重散射修正。

      动力学衍射理论

      Ewald的理论称为动力学理论。该理论考虑到了晶体内所有波的相互作用,认为入射线与衍射线在晶体内相干地结合,而且能来回地交换能量。两种理论对细小的晶体粉末得到的强度公式相同,而对大块完整的晶体,则必须采用动力学理论才能得出正确的结果。

      发展方向

      X射线分析的新发展,金属X射线分析由于设备和技术的普及已逐步变成金属研究和有机材料,纳米材料测试的常规方法。而且还用于动态测量。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。

      详细内容

      概述

      研究晶体材料,X射线衍射方法非常理想非常有效,而对于液体和非晶态物固体,这种方法也能提供许多基本的重要数据。所以X射线衍射法被认为是研究固体最有效的工具。在各种衍射实验方法中,基本方法有单晶法、多晶法和双晶法。

      单晶衍射法

      单晶X射线衍射分析的基本方法为劳埃法与周转晶体法。

      劳埃法

      劳埃法以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的分布构成一条晶带曲线。

      周转晶体法

      周转晶体法以单色X射线照射转动的单晶样品,用以样品转动轴为轴线的圆柱形底片记录产生的衍射线,在底片上形成分立的衍射斑。这样的衍射花样容易准确测定晶体的衍射方向和衍射强度,适用于未知晶体的结构分析。周转晶体法很容易分析对称性较低的晶体(如正交、单斜、三斜等晶系晶体)结构,但应用较少。

      多晶衍射法

      多晶X射线衍射方法包括照相法与衍射仪法。

      照相法

      照相法以光源发出的特征X射线照射多晶样品,并用底片记录衍射花样。根据样品与底片的相对位置,照相法可以分为德拜法、聚焦法和针孔法,其中德拜法应用最为普遍。

      德拜法以一束准直的特征X射线照射到小块粉末样品上,用卷成圆柱状并与样品同轴安装的窄条底片记录衍射信息,获得的衍射花样是一些衍射弧。此方法的优点为:⑴ 所用试样量少(0.1毫克即可);⑵ 包含了试样产生的全部反射线;⑶ 装置和技术比较简单。

      聚焦法的底片与样品处于同一圆周上,以具有较大发散度的单色X射线照射样品上较大区域。由于同一圆周上的同弧圆周角相等,使得多晶样品中的等同晶面的衍射线在底片上聚焦成一点或一条线。聚焦法曝光时间短,分辨率是德拜法的两倍,但在小θ 范围衍射线条较少且宽,不适于分析未知样品。

      针孔法用三个针孔准直的单色X射线为光源,照射到平板样品上。根据底片不同的位置针孔法又分为穿透针孔法和背射针孔法。针孔法得到的衍射花样是衍射线的整个圆环,适于研究晶粒大小、晶体完整性、宏观残余应力及多晶试样中的择优取向等。但这种方法只能记录很少的几个衍射环,不适于其它应用。

      衍射仪法

      X射线衍射仪以布拉格实验装置为原型,融合了机械与电子技术等多方面的成果。衍射仪由X射线发生器、X射线测角仪、辐射探测器和辐射探测电路4个基本部分组成,是以特征X射线照射多晶体样品,并以辐射探测器记录衍射信息的衍射实验装置。现代X射线衍射仪还配有控制操作和运行软件的计算机系统。X射线衍射仪的成像原理与聚集法相同,但记录方式及相应获得的衍射花样不同。衍射仪采用具有一定发散度的入射线,也用“同一圆周上的同弧圆周角相等”的原理聚焦,不同的是其聚焦圆半径随 2θ的变化而变化。衍射仪法以其方便、快捷、准确和可以自动进行数据处理等特点在许多领域中取代了照相法,现在已成为晶体结构分析等工作的主要方法。

      双晶衍射法

      双晶衍射仪用一束X射线(通常用Ka1作为射线源)照射一个参考晶体的表面,使符合布拉格条件的某一波长的X射线在很小角度范围内被反射,这样便得到接近单色并受到偏振化的窄反射线,再用适当的光阑作为限制,就得到近乎准值的X射线束。把此X射线作为第二晶体的入射线,第二晶体和计数管在衍射位置附近分别以Δθ 及Δ(2θ)角度摆动,就形成通常的双晶衍射仪。

      在近完整晶体中,缺陷、畸变等体现在X射线谱中只有几十弧秒,而半导体材料进行外延生长要求晶格失配要达到10-4或更小。这样精细的要求使双晶X射线衍射技术成为近代光电子材料及器件研制的必备测量仪器,以双晶衍射技术为基础而发展起来的四晶及五晶衍射技术(亦称为双晶衍射),已成为近代X射线衍射技术取得突出成就的标志。但双晶衍射仪的第二晶体最好与第一晶体是同种晶体,否则会发生色散。所以在测量时,双晶衍射仪的参考晶体要与被测晶体相同,这个要求使双晶衍射仪的使用受到限制。

  • X射线衍射法

    Chloe 发布于 2014-05-05 10:43:08

      概念

      X射线晶体学是一门利用X射线来研究晶体中原子排列的学科。更准确地说,利用电子对X射线的散射作用,X射线晶体学可以获得晶体中电子密度的分布情况,再从中分析获得原子的位置信息,即晶体结构。(以下论述以高分子材料的X射线晶体学为主)由于所有的原子都含有电子,并且X射线的波长范围为0.001-10纳米(即0.01-100埃),其波长与成键原子之间的距离(1-2埃附近)可比,因此X射线可用于研究各类分子的结构。但是,到目前为止还不能用X射线对单个的分子成像,因为没有X射线透镜可以聚焦X射线,而且X射线对单个分子的衍射能力非常弱,无法被探测。而晶体(一般为单晶)中含有数量巨大的方位相同的分子,X射线对这些分子的衍射叠加在一起就能够产生足以被探测的信号。从这个意义上说,晶体就是一个X射线的信号放大器。X射线晶体学将X射线与晶体学联系在一起,从而可以对各类晶体结构进行研究,特别是蛋白质晶体结构。

      根据X射线穿过物质的晶格时所产生的衍射特征,鉴定物质成分与结构的方法。利用晶体对X射线的衍射效应,研究晶体的内部结构,最终确定出不同的或相同的原子在晶胞内的位置(即原子的排列方式)。它包括:①根据晶体的晶形、劳埃图以及某些物理性质(如压电性、旋光性等),确定出晶体的晶系和对称型;②根据回摆图或旋转图测定出晶胞参数;③根据晶体化学组成及其密度和晶胞参数,计算出单位晶胞内分子数,从而算出单位晶胞内各种原子的数目;④对魏森堡图或回摆图进行指标化,即对照片上每一衍射点确定其晶面指标的过程,然后根据衍射系统消光的特点定出衍射群,再结合其他性质定出空间群;⑤根据衍射点的指标和对应每一衍射点的衍射强度,并通过对强度数据进行一系列修正,还原为结构振幅;⑥再根据这许多由实验得到的结构振幅资料,或运用直接法(求出其相角),或结合晶体化学原理运用试差法(反复假设试用结构),最终确定出每个原子在单位晶胞内的坐标。X射线衍射技术已经成为研究粘土矿物(尤其是研究泥岩和碳酸盐岩中的粘土矿物)的最重要手段,并且也是研究各种自生矿物的重要手段,并能对泥、页岩中自生矿物和碎屑矿物做定量分析,此外还可以用于固体有机质的显微结构与变质程度的研究,这些都是其他分析手段的弱点。

      X射线衍射法是一种研究晶体结构的分析方法,而不是直接研究试样内含有元素的种类及含量的方法。当X射线照射晶态结构时,将受到晶体点阵排列的不同原子或分子所衍射。X射线照射两个晶面距为d的晶面时,受到晶面的反射,两束反射X光程差2dsinθ使入射波长的整数倍时,即2dsinθ=nλ(n为整数),两束光的相位一致,发生相长干涉,这种干涉现象称为衍射,晶体对X射线的这种折射规则称为布拉格规则。θ称为衍射角(入射或衍射X射线与晶面间夹角)。n相当于相干波之间的位相差,n=1,2…时各称0级、1级、2级……衍射线。反射级次不清楚时,均以n=1求d。晶面间距一般为物质的特有参数,对一个物质若能测定数个d及与其相对应的衍射线的相对强度,则能对物质进行鉴定。

  • XRD 原理

    阿土仔 发布于 2009-01-05 01:39:03

    X射线荧光衍射:

          利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)X射线能谱法(能量色散)

          当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。

          根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)X射线荧光能谱仪(能量色散)

          X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。

          X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器 。探测器和记录等与X射线荧光光谱仪相同。

          X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。

          X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。

  • X射线衍射仪(XRD)相关参数

    阿土仔 发布于 2009-01-05 02:01:23

    ·步进扫描
          试样每转动一步(固定的Δθ)就停下来,测量记录系统开始测量该位置上的衍射强度。强度的测量也有两种方式:定时计数方式和定数计时方式。然后试样再转过一步,再进行强度测量。如此一步步进行下去,完成指定角度范围内衍射图的扫描。   用记录仪记录衍射图时,采用步进扫描方式的优点是不受计数率表RC的影响,没有滞后及RC的平滑效应,分辨率不受RC影响;尤其它在衍射线强度极弱或背底很高时特别有用,在两者共存时更是如此。因为采用步进扫描时,可以在每个θ角处作较长时间的计数测量,以得到较大的每步总计数,从而可减小计数统计起伏的影响。

      步进扫描一般耗费时间较多,因而须认真考虑其参数。选择步进宽度时需考虑两个因素:一是所用接收狭缝宽度,步进宽度至少不应大于狭缝宽度所对应的角度;二是所测衍射线线形的尖锐程度,步进宽度过大则会降低分辨率甚至掩盖衍射线剖面的细节。为此,步进宽度不应大于最尖锐峰的半高度宽的1/2。但是,也不宜使步进宽度过小。步进时间即每步停留的测量时间,若长一些,可减小计数统计误差,提高准确度与灵敏度,但将损失工作效率。

     
    ·定速连续扫描
          试样和接收狭缝以角速度比1:2的关系匀速转动。在转动过程中,检测器连续地测量X射线的散射强度,各晶面的衍射线依次被接收。计算机控制的衍射仪多数采用步进电机来驱动测角仪转动,因此实际上转动并不是严格连续的,而是一步一步地(每步0.0025°)跳跃式转动,在转动速度较慢时尤为明显。但是检测器及测量系统是连续工作的。

     连续扫描的优点是工作效率较高。例如以2θ每分钟转动4°的速度扫描,扫描范围从20~80°的衍射图15分钟即可完成,而且也有不错的分辨率、灵敏度和精确度,因而对大量的日常工作(一般是物相鉴定工作)是非常合适的。但在使用长图记录仪记录时,记录图会受到计数率表RC的影响,须适当地选择时间常数。

     
    ·脉冲计数率
           在衍射仪方法中,X射线的强度用脉冲计数率表示,单位为每秒脉冲数(cps)。检测器在单位时间输出的平均脉冲数,直接决定于检测器在单位时间接收的光子数。如果检测器的量子效率为100%,而系统(放大器和脉冲幅度分析器等)又没有计数损失(漏计),那么每秒脉冲数便是每秒光子数。

     
    ·能量分辨
           是指检测器接收某一能量的量子(某一波长射线的光量子),所输出脉冲信号的平均幅度与入射量子的能量成正比的特性。

     
    ·闪烁检测器
          是各种晶体X射线衍射工作中通用性能最好的检测器。它的主要优点是:对于晶体X射线衍射使用的X射线均具有很高甚至达到100%的量子效率;使用寿命长,稳定性好;此外,它和PC一样,具有很短的分辨时间(10-7秒数量级),因而实际上不必考虑由于检测器本身的限制所带来的计数损失;它和PC一样,对晶体衍射工作使用的软X射线也有一定的能量分辨本领。因此通常X射线粉末衍射仪配用的是闪烁检测器。

     
    ·防散射狭缝
          用来防止一些附加散射(如各狭缝光阑边缘的散射,光路上其它金属附件的散射)进入检测器,有助于减低背景。防散射狭缝是光路中的辅助狭缝,它能限制由于不同原因产生的附加散射进入检测器。例如光路中空气的散射、狭缝边缘的散射、样品框的散射等等。此狭缝如果选用得当,可以得到最低的背底,而衍射线强度的降低不超过2%。如果衍射线强度损失太多,则应改较宽的防散射狭缝。

     
    ·接收狭缝
          用来限制所接收的衍射光束的宽度。接收狭缝是为了限制待测角度位置附近区域之外的X射线进入检测器,它的宽度对衍射仪的分辨能力、线的强度以及峰高/背底比有着重要的影响作用。

     
    ·发散狭缝
          用来限制发散光束的宽度。发散狭缝的宽度决定了入射X射线束在扫描平面上的发散角。

     
    ·Sollar狭缝
          是一组平行薄片光阑,实际上是由一组平行等间距的、平面与射线源焦线垂直的金属簿片组成,用来限制X射线在测角仪轴向方向的发散,使X射线束可以近似的看作仅在扫描圆平面上发散的发散束。

     
    ·测角仪
          是衍射仪上最精密的机械部件,用来精确测量衍射角。

     
    ·X射线管
          衍射用的X射线管实际上都属于热电子二极管,有密封式和转靶式两种。前者最大功率不超过2.5KW,视靶材料的不同而异;后者是为获得高强度的X射线而设计的,一般功率在10KW以上。

     
    ·能量色散型X射线衍射仪
          半导体固体检测器(SSD)是一种具有极高能量分辨本领的射线强度检测器,能用来测量软X射线的能量和波长。能量色散型X射线衍射仪(EDXRD)是一种以SSD为基础的一种新型衍射仪,使用连续波长的X射线照射样品,在一个固定的角度位置测量衍射线的波长谱,从而计算各衍射晶面的间距d值。EDXRD也是一种高速多晶衍射设备。

     
    ·位敏正比检测器衍射仪
           位敏正比检测器(PSPC)是一种新型射线检测器。它不仅能进行粒子计数测量,而且通过与它配合的一套时间分析系统能够同时得到粒子进入检测器窗口的位置坐标。因此用PSPC进行测量可以获得如用感光软片进行记录时同样丰富的信息。PSPC得到的信息直接实时地由计算机系统进行处理,能立即得到实验结果。应用PSPC已经成功地发展了一种新型的衍射仪——PSPC衍射仪,它能对整个可测量范围内的衍射进行同时记录,是一种高速多晶衍射设备,特别适用于跟踪动态过程的衍射研究。

     
    ·微区衍射仪
          微区衍射仪是按平行光束型衍射几何设计的,使用特殊的大窗口闪烁检测器或环形窗口的正比检测器。工作时,检测器沿入射线方向移动,通过固定直径的环形狭缝对各衍射锥面的总强度依次地进行测量。由于它使用细平行光束,故能对样品的一个微区(直径可小至30μm)进行衍射分析。

     
    ·粉末衍射仪
          粉末衍射仪是目前研究粉末的X射线衍射最常用而又最方便的设备。它的光路系统设计采用聚焦光束型的衍射几何,一般使用普通的NaI(Tl)闪烁检测器或正比计数管检测器以电子学方法进行衍射强度的测量;衍射角的测量则通过一台精密的机械测角仪来实现。

     
    ·转靶式管
          这种管采用一种特殊的运动结构以大大增强靶面的冷却,即所谓旋转阳极X射线管,是目前最实用的高强度X射线发生装置。管子的阳极设计成圆柱体形,柱面作为靶面,阳极需要用水冷却。工作时阳极圆柱以高速旋转,这样靶面受电子束轰击的部位不再是一个点或一条线段而是被延展成阳极柱体上的一段柱面,使受热面积展开,从而有效地加强了热量的散发。所以,这种管的功率能远远超过前两种管子。对于铜或钼靶管,密封式管的额定功率,目前只能达到2 KW左右,而转靶式管最高可达90 KW。

     
    ·密封式管
           这是最常使用的X射线管,它的靶和灯丝密封在高真空的壳体内。壳体上有对X射线“透明”的X射线出射“窗孔”。靶和灯丝不能更换,如果需要使用另一种靶,就需要换用另一只相应靶材的管子。这种管子使用方便,但若灯丝烧断后它的寿命也就完全终结了。密封式X射线管的寿命一般为1000—2000小时,它的报废往往并不是与因灯丝损坏,而是由于靶面被熔毁或因受到钨蒸气及管内受热部分金属的污染,致使发射的X射线谱线“不纯”而被废用。

     
    ·可拆式管

           这种X射线管在动真空下工作,配有真空系统,使用时需抽真空使管内真空度达到10-5毫帕或更佳的真空度。不同元素的靶可以随时更换,灯丝损坏后也可以更换,这种管的寿命可以说是无限的。

     
    ·非相干散射

           当物质中的电子与原子之间的束缚力较小(如原子的外层电子)时,电子可能被X光子撞离原子成为反冲电子。因反冲电子将带走一部分能量,使得光子能量减少,从而使随后的散射波波长发生改变。这样一来,入射波与散射波将不再具有相干能力,成为非相干散射。

     
    ·相干散射
           物质对X射线散射的实质是物质中的电子与X光子的相互作用。当入射光子碰撞电子后,若电子能牢固地保持在原来位置上(原子对电子的束缚力很强),则光子将产生刚性碰撞,其作用效果是辐射出电磁波-----散射波。这种散射波的波长和频率与入射波完全相同,新的散射波之间将可以发生相互干涉-----相干散射。X射线的衍射现象正是基于相干散射之上的。

  • X射线谱-X射线衍射(XRD)知识汇总--分类

    lifejourney 发布于 2009-03-29 00:02:13

     

      首先,看下X射线衍射法(X-Rays diffraction analysis)的分类。

        X射线衍射法因晶体是单晶还是多晶分为x射线单晶衍射法和X射线多晶衍射法。

      单晶X射线衍射分析的基本方法为劳埃法、周转晶体法和四圆单晶衍射仪法。书上还会有别的方法,因不太常用在此不再啰述。现在最常用的是四圆单晶衍射仪测单晶。

      劳埃法改变波长、以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的分布构成一条晶带曲线。

      周转晶体法:周转晶体法以单色X射线照射转动的单晶样品,用以样品转动轴为轴线的圆柱形底片记录产生的衍射线,在底片上形成分立的衍射斑。这样的衍射花样容易准确测定晶体的衍射方向和衍射强度,适用于未知晶体的结构分析。周转晶体法很容易分析对称性较低的晶体(如正交、单斜、三斜等晶系晶体)。

      四圆单晶衍射仪法是转动晶体。以四个圆的转动变量φ、χ、ω和2θ进行晶体和计数器的转动,以实现倒格点与埃瓦尔德(Ewald)衍射球球面相遇产生衍射的必要条件。φ圆对应于安置晶体的测角头的自转转动,χ圆对应于测角头在其所坐落的仪器金属χ环内侧圆上的转动,ω圆对应于金属χ环绕中垂线(Z轴)进行的转动,2θ圆则对应于为保持衍射方向相对于入射X射线为2θ的角度所需进行计数器的转动。是常用的测量单晶衍射的方法

      X多晶衍射法包括:照相法、针孔法、衍射仪法。照相法又可分为德拜照相法和聚焦法。其中德拜法应用最广泛。

      照相法三者均为特征单色X射线源照射粉末样品。不同的是:

      a,德拜法用卷成圆柱状的底片记录衍射信息,并放置底片与样品同柱安装。特点:1,需要样品量少,0.1mg即可。2,装置,操作简单。3,包含样品上的全部反射线。因此较为常用。

      b,聚焦法:底片与样品在同一圆周上,使多晶样品中的等同晶面在底片上聚成一点或一条线。特点:曝光时间短,分辨率是德拜法的两倍,但在小θ 范围衍射线条较少且宽,不适于分析未知样品。

      c,针孔法根据底片不同的位置针孔法又分为穿透针孔法和背射针孔法。特点:可得到衍射线的整个圆环,适于研究晶粒大小、晶体完整性、宏观残余应力及多晶试样中的择优取向等。但这种方法只能记录很少的几个衍射环,不适于其它应用。

      d,
    衍射仪法

      X射线衍射仪以布拉格实验装置为原型,融合了机械与电子技术等多方面的成果。衍射仪由X射线发生器、X射线测角仪、辐射探测器和辐射探测电路4个基本部分组成,是以特征X射线照射多晶体样品,并以辐射探测器记录衍射信息的衍射实验装置。现代X射线衍射仪还配有控制操作和运行软件的计算机系统。

      X射线衍射仪的成像原理与聚集法相同,但记录方式及相应获得的衍射花样不同。衍射仪采用具有一定发散度的入射线,也用“同一圆周上的同弧圆周角相等”的原理聚焦,不同的是其聚焦圆半径随 2θ的变化而变化。

      衍射仪法以其方便、快捷、准确和可以自动进行数据处理等特点在许多领域中取代了照相法,现在已成为晶体结构分析等工作的主要方法。

     感谢木偶人6的回复http://bbs.antpedia.com/viewthread.php?tid=7012

我的存档

数据统计

  • 访问量: 0
  • 建立时间: 2021-06-29
  • 更新时间: 2021-06-29

RSS订阅

Open Toolbar