发布新日志

  • TSQ质谱仪校正SOP

    matrix 发布于 2008-02-10 20:42:28

    瓢虫(liang_sp)

    1. 注射泵导入校正溶液(polytyrosine 1,3,6 仪器自带):

    将样品转移毛细管直接连接到500 μL进样针上,固定于注射泵支架中,按下注射泵手柄上的黑色按钮,将手柄缓慢放下至与注射进样针接触。

    2. 正离子模式校正

    2.1 校正前设置

    2.1.1 打开Quantum Tune Master,点击菜单栏On/Standby,激活质谱仪。

    2.1.2 离子源模式为ESI,选Positive Polarity进入正离子模式。

    2.1.3 进入Compound Optimization Workspace。

    2.1.4 选Define Scan/Full Scan/Q1MS模式,进行全扫描,扫描范围为150-1050 u。

    2.1.5 选Optimize Compound Dependent Devices,对仪器参数进行设置:

    • Spray voltage设为4000 V
    • Sheath Gas Pressure设为5 Arb
    • Ion Sweep Gas Pressure设为0
    • Aux Gas Pressure设为5 Arb
    • Capillary temparature设为270℃
    • Tube lens offset设为90 V
    • Source CID设为0 V

    2.1.6 将注射泵流速设为5 μL/min;Syringe Size选为500 μL;

    2.2 建立稳定的离子流信号

    2.2.1 仪器在Full Scan/Q1MS模式下稳定5-10 min,将Center Mass设为508.208 u,Scan width设为10.000 u,Scan time设为0.2 s,Peak Width设为0.7 u,Microscan设为1,其他如AutoSIM, Source CID, Data processing,Q2 CID Gas不选,最后点击Apply。

    2.2.2 点击Display TIC开始显示离子流信号。

    2.2.3 在Single sample/MS only 中将Optimization Mass设为508 u,在Optimize Compound Dependent Devices中选中Spray Voltage、 Sheath Gas Pressure、Aux Gas Pressure并进行优化,使离子流信号波动小于10%。

    2.2.4 选Define Scan/Full Scan/Q1MS模式,进行全扫描,扫描范围为150-1050 u,m/z 182、508、997离子峰必须是质谱图中的主峰,三个峰之间的比值应在1个数量级(10)以内,峰高应在10的6次方-10的7次方之间,峰高的变异或波动应在10%以内,每个峰都应对称、不裂分,分离良好。

    2.2.5 在Full Scan/Q3MS的对话框中,选择与Q1MS相同的设置(同3.4),同样观察质谱图,使达到3.4的要求。

    2.3 自动校正操作

    2.3.1 选System Tune and Calibration Workspace工具栏

    2.3.2 选中Auto Tune-Calibration,在compound 栏中选择Polytyrosine-1,3,6。

    2.3.3 选中Both对第一和第三个四级杆进行同时校正。

    2.3.4 点击Start,开始自动校正。

    2.3.5 若自动校正未通过,点击Undo重新保存原先手动校正设置;再点击Accept重新载入原先手动校正设置;再次点击Start,开始自动校正。

    2.3.6 若自动校正通过(三个分子量的峰宽-分辨率的线性良好)。点击Accept接受校正结果。

    2.3.7 如果未对负离子模式进行自动校正,系统会问是否将当前正离子模式的各参数复制到负离子模式,一般可选Yes,但也可对负离子模式进行独立的校正。

    2.3.8 点击Save Calib. As对校正文件进行保存。

    2.3.9 将Tune method进行保存。

    3. 负离子模式的自动校正

    3.1 选Display/Compound Dependent Devices菜单,将喷雾电压(Spray voltage)设为0 V。

    3.2 在工具栏中选定负离子模式。

    3.3 在Optimize Compound Dependent Devices中,将Spray voltage设为3000 V; Sheath Gas Pressure为15 Arb;Aux Gas Pressure为5 Arb。

    3.4 选Define Scan/Full Scan/Q1MS,将Center Mass设为995 u,Scan width设为10.000 u,Scan time设为0.2 s,Peak Width设为0.7 u,Microscan设为1,其他如AutoSIM, Source CID, Data processing,Q2 CID Gas不选,最后点击Apply。TIC基峰强度应>10的6次方。

    3.5在System Tune and Calibration界面下,选中Compound下拉菜单中的Polytyrosine-Neg。

    3.6 选择Auto Tune-Calibration界面下的Both,点击Start,对仪器进行自动校正。

    3.7 若自动校正未通过,点击Undo重新保存原先手动校正设置;再点击Accept重新载入原先手动校正设置;再次点击Start,开始自动校正。

    3.8 若自动校正通过(三个分子量的峰宽-分辨率的线性良好),点击Accept接受校正结果。

    3.9 如果未对正离子模式进行自动校正,系统会问是否将当前负离子模式的各参数复制到正离子模式,选No。

    3.10点击Save Calib. As对校正文件进行保存。

    3.11 将Tune method进行保存。

    4. 系统清洗

    4.1 打开Setup/Syringe Pump & Sample Loop对话框,将Syringe Flow Control选中Off,点击Apply停止注射泵。

    4.2 取下进样针,用甲醇:水(50:50,v/v)反复抽洗数次。

    4.3 进样针吸入甲醇:水(50:50,v/v),对样品转移毛细管进行清洗。

    4.4 对加热毛细管进行清洗。

    5. 注意事项:

    5.1 质谱检测器校正周期为1-3个月;校正液为聚酪氨酸溶液(内含酪氨酸的单体、三聚物和六聚物)。

    5.2 校正用进样毛细管和实验用进样毛细管需分开保存。

    5.3 校正液中不能有气泡,管路之间不能有泄漏。

    5.4 正负离子转换时,要先将喷雾电压设为0,将Negative Polarity改换为Positive Polarity(或Negative Polarity改换为Positive Polarity),再将喷雾电压调回4000V(+)或3000V(-)。
  • 气相色谱仪安装要求方法及注意事项

    gamewang 发布于 2012-04-13 11:14:32

      一、色谱仪的安装

      1.对气相色谱仪分析室的要求

      (1)分析室周围不得有强磁场,易燃及强腐蚀性气体。

      (2)室内环境温度应在5~35度范围内,湿度小于等于80%(相对湿度),且室内应保持空气流通。有条件的厂最好安装空调。

      (3)准备好能承受整套仪器,宽高适中,便于操作的工作平台。一般工厂以水泥平台较佳(高0.6~0.8米),平台不能紧靠墙,应离墙0.8~1.0米,便于接线及检修用。

      (4)供仪器使用的动力线路容量应在3KVA以上,而且仪器使用电源应尽可能不与大功率耗电量设备或经常大幅度变化的用电设备公用一条线。电源必须接地良好,一般在潮湿地面(或食盐溶液灌注)钉入长约0.5~1.0米的铜棒(丝),然后将电源接地点与之相连,总之要求接地电阻小于1欧姆即可。(注:建议电源和外壳都接地,这样效果更好)。

      2.气源准备及净化

      (1)气源准备事先准备好需用气体的高压钢瓶(一般大中城市均可购到),庄某一种气体的钢瓶只能装这种气体,每个钢瓶的颜色代表一种气体,不能互换。一般用氮气,氢气,空气这三种气体,每种气体最好准备两个钢瓶,以备用。有的厂使用氢气发生器和空气压缩机也可,但空压机必须无油。凡钢瓶气压下降到 1~2Mpa时,应更换气瓶。一般厂家使用使用以上气体99.99%即可,电子捕获检测器必须使用高纯气源99.999%以上。

      (2)气源净化为了出去各种气体中可能含有的水分,灰分和有机气体成分,在气体进入仪器之前应先经过严格净化处理。若全部使用钢瓶气体,有的色谱仪附有净化器,且内已填有5A分子筛,活性炭,硅胶,基本可满足要求。若使用一般氢气发生器,则必须加强对水分的净化处理,故应增大干燥管面积(体积在450立方厘米以上为好,填料用5A分子筛为佳),并在发生器后接容积较大的储器桶,以减少或克服气源压力波动时对仪器基线的影响。若使用空压机作空气来源,空压机进气口应加强空气过滤,加大净化管体积,在干燥管内应填充一半5A分子筛,一半活性炭。一般国产无油气体压缩机可满足需要。

      3.气相色谱仪成套性检查及安放仪器开箱后,按资料袋内附件清单,进行逐项清点,并将易损零件的备件予以妥善保存。然后按照仪器的使用说明书上要求,将其放置于工作平台上,并对着接线图和各插头,插座将仪器各部分连接起来,最后连接色谱工作站或数据处理机。注意各接头不要接错。

      4.外气路的连接

      (1)减压阀的安装有的仪器随机带有减压阀,若没有的则要购买。所用的是2只氧气,1只氢气减压阀。将2只氧气减压阀,1只氢气减压阀分别装到氮气,空气和氢气钢瓶上(注意氢气减压阀螺纹是反向的,并在接口处加上所附的O形塑料垫圈,以便密封),旋紧螺帽后,关闭减压阀调节手柄(即旋松),打开钢瓶高压阀,此时减压阀高压表应有指示,关闭高压阀后,其指示压力不应下降,否则有漏,应及时排除(用垫圈或生料带密封),有时高压阀也会漏,要注意。然后旋动调节手柄将余气排掉。

      (2)外气路连接法把钢瓶中的气体引入色谱仪中,有的采用不锈钢管(φ2×0.5mm),有的采用耐压塑料管(φ3×0.5mm)。采用塑料管容易操作,所以一般采用塑料管。若用塑料管,在接头处就要有不锈钢衬管(φ2×20mm)和一些密封用的塑料等材料。从钢瓶到仪器的塑料管的长度视需要而定,不宜过长,然后用塑料管把气源和仪器(气体进口)连接起来。

      (3)外气路的检漏把主机气路面板上载气,氢气,空气的阀旋钮关闭,然后开启各路钢瓶的高压阀,调节减压阀上低压表输出压力,使载气,空气压力为0.3~0.4Mpa,氢气压力为0.2~0.25Mpa。然后关闭高压阀,此时减压阀上低压表指示值不应下降,如下降,则说明连接气路中有漏,应予排除。

      5.色谱仪气路气密性检查气密性检查是一项十分重要的工作,若气路有漏,不仅直接导致仪器工作不稳定或灵敏度下降,而且还有发生爆炸的危险,故在操作使用前必须进行这项工作(气密检查一般是检查载气流路,氢气和空气流路若未拆动过,可不检查)。方法是,打开色谱柱箱盖,把柱子从检测器上拆下,将柱口堵死,然后开启载气流路,调低压输出压力为0.3~0.4Mpa,打开主机面板上的载气旋钮,此时压力表应有指示。最后将载气旋钮关闭,半小时内其柱前压力指示值不应有下降,若有下降则有漏,应予排除。若是主机内气路有漏,则拆下主机有关侧板,用肥皂水(最好是十二烷基磺酸钠溶液)逐个接头检漏(氢,空气也可如此检漏),最后将肥皂水擦干。

      二、仪器的调试把气路,仪器等按上述接好,安置好后,便可进行下面检查和调试工作。

      1.色谱仪电路各部件检查仪器启动前应首先接通载气流路,调节主机面板上的载气旋钮(即:载气稳流阀)。

      (1)启动主机开启主机总电源开关,色谱柱箱内马达开始工作,并检查是否有异样声响,若有,立即切断电源,并进一步检查排除。有的色谱仪启动时自诊断,显示仪器运转情况:正常或不正常,不正常显示包括哪一部分有问题,接线错误等等。

      (2)各路温控检查按照说明书,逐个对柱温(包括程序升温),进样器(汽化室)温度,检测器温度进行恒温检查,是否能在高,中,低温度下保持恒定,特别是要求柱温温控精度达到0.01度。

  • [论坛]X射线荧光光谱分析中的粉末压片制样法

    风中烟雨 发布于 2008-07-08 14:25:56

    X射线荧光光谱分析中的粉末压片制样法

    摘  要
    本文是一篇关于XRF光谱分析中粉末压片制样法的综述。根据70多篇文献和一些常见的资料,
    作者从样品制备、方法应用、理论校正等三个方面介绍了粉末压片制样法的现状和进展。
    1 前言
      作为一种比较成熟的成分分析手段,XRF光谱分析在地质、冶金、环境、化工、材料等领域中应用广泛。它的分析对象主要是块状固体、粉末、液体三种,其中,固体粉末是分析得最多的一种。因为很多试样如水泥、煤、灰尘等本身就是粉末,对于形状不规则的块状固体,由于直接分析技术还不成熟,往往也粉碎成粉末。液体试样可放入液体样品杯中分析,但由于不能抽真空等原因,有时将液体转变为固体,一些预分离、富集的结果也常是粉末,因此,粉末试样的制样技术是XRF光谱分析中的重要研究课题。
      XRF光谱分析粉末样品主要有两种方法:粉末压片法和熔融法。[1,2]对于样品量极少的微量分析,还有一种薄样法,这里拟不介绍。熔融法是应用较多的一种制样方法,它较好地消除了颗粒度效应和矿物效应的影响。但熔融法也有缺点:因样品被熔剂稀释和吸收,使轻元素的测量强度减小;制样复杂,要花费大量时间;成本也较高。粉末压片法的优点是简单、快速、经济,在分析工作量大、分析精度要求不太高时应用很普遍,也常用于痕量元素的分析。从中国理学XRF光谱仪协会和中国菲利浦X射线分析仪器协会的最近两本论文集[3-4]来看,采取粉末压片制样的文章占了很大的比例。在实际应用如水泥、岩石、化探样品的分析中,粉末压片仍是一种应用很广泛的XRF制样法。
      近年来,有关XRF及其应用的综述或评论很多[5-13],其中包括样品制备方面的内容,还有一些专门介绍制样法的文章[14-15]。本文根据收集到的70多篇文献,从样品制备、方法应用、理论校正等方面阐述粉末压片法的现状与进展。

    2 样品制备
      粉末压片制样法主要分三步:干燥和焙烧;混合和研磨;压片[16]。有粉末直接压片、粉末稀释压片、用粘结剂衬底和镶边等方法[17]。陆少兰等[18]就混合稀土氧化物中各组分的测定,比较了粉末直接压片法、粉末稀释压片法、熔融法等在检出限、分析精度、成本、速度及使用范围方面的差别。才书林等[19]对地矿部的26个标样用粘结剂法和衬底法压片,分析其中17个微量元素,比较发现两种制样方法的准确度无大的差别。为适应象贝壳这样少量样品的分析,包生祥[20-21]提出了少量样品(0.5g样和0.1g样)制片和薄片样(具中间厚度)装样新方法。
    2.1 粘结剂、助磨剂及其他添加剂
      当样品本身的粘结力较小时,选择一种合适的粘结剂很重要。粘结剂有固体和液体两种,常用的固体粘结剂有硼酸、甲基纤维素、聚乙烯、石蜡、淀粉[22]、滤纸或色谱纸浆、碳酸锂[23]等。Zyl等[24]用石蜡和苯乙烯的混合物作粘结剂。粘结剂的加入量为样品的10%-50%,过多会影响轻元素的检出限。粘结剂的加入会使分析线强度下降,如果粘结剂颗粒度较大,还会引入颗粒度效应。实验证明[21],在粗长的国产纤维素中加入适量的Li2CO3或H3BO3时,于磨样机内振动0.5 min即可碎至近200目。文献[19]从吸水性、样品的坚固性、抽真空时间、对仪器污染、制样成功率、成本等方面对几种常用的粘结剂作了比较,
    从而认为,低压聚乙烯是一种较理想的粘结剂。液体粘结剂有乙醇[25]、聚乙烯醇(PVA)[26]等有机溶剂。Harvy[27]用聚乙烯吡咯烷酮(PVP)和甲基纤维素(MC)混合溶于乙醇和水中作粘结剂,Waston[28]则详述了聚乙烯吡咯烷酮-甲基纤维素(PVP-MC)的制法,将70g PVP溶于350mL乙醇制得溶液A,40g MC溶于90℃蒸馏水中搅拌冷却至40℃制得溶液B,然后将A缓慢加入B中即可制得淡黄色液体PVP-MC。作者认为,使用液体粘结剂易制成均匀、重复性好的压片,用PVP-MC代替PVA,制得的样片更加坚固耐用。
    在制备试样和标样过程中,除粘结剂外,还可加入助磨剂、内标元素、稀释剂等,如:Wheeler[29]在5.0g水泥试样中加入0.1g助磨剂(一种清洁剂)粉碎,以硼酸衬底压片分析12个元素,郭燕春[30]则用三乙醇胺(C6H15NO3)和硬脂酸与水泥生料混合研磨,研磨效率高,磨后清洗工作很简单。Zsolany等[31]选择镓(Ga)作为内标元素分析土壤中V、 Cr、 Ni、 Cu、 Zn、As等微量元素。液体粘结剂或助磨剂的最大优点是不用称量,但压片后要烘干,加入的量也不可过多,一般100g样品中加入几毫升到十几毫升。固体粘结剂和助磨剂等需要准确称量,并且要混合均匀,因此,制样较麻烦,如果加上清洗粉碎容器的时间,有时甚至比熔融法更长。在大批量的分析中,多采用直接压片或衬底压片法。
    2.2 粉碎技术
    可用玛瑙或碳化钨研钵人工研磨,现在较多使用机械振动磨或球磨机,效率很高。一般样品均可粉碎至74μm以下(通过200目筛子),最好的可以达到20μm左右。Buemi[32]等用几种不同的粉碎方法粉碎岩石,分析了颗粒度效应的影响。随着粉碎时间的延长,颗粒度减小到一定程度不再变细,如果继续粉碎,反而会发生“团聚”现象。要提高粉碎效率,可以加入固体或液体助磨剂。粉碎时间越长,粉碎容器带来的污染越严重,因此,选择一种合适的粉碎容器很重要。要比较这种污染,可以分析一种很硬的物质(如石英)经粉碎后的污染情况[33],或对比两种不同粉碎方法的分析结果。在分析痕量元素时,为了提高分析的灵敏度和准确度,这是非常必要的。还有一种污染,是不同粉碎试样间的相互污染。每次粉碎后都要保证容器清洗干净,当样品量较多时,粉碎前可用少量样品预“清洗”两次。Waston[28]将岩石粉末(10g)装入55mm×55mm塑料袋内,然后注入液体粘结(PVP-MC)约1mL,封好口后用手进行搓揉混合,每个袋子仅用一次,无需清洗。这种方法简单快速,无污染,且成本低,对于一些“脏”的样品如铬矿石、赭石、锰矿石的分析来说十分有用,对那些分析速度要求快的工作者来说也不失为一种好方法。
    2.3 压片
    压样设备常见的有手动或电动液压机,粉末样品装入铝杯或铝环(或塑料环)中,在相应的模具中加压成型。在真空光谱仪中,粉末压片可能会含有空气或其它气体而发生溅射,既破坏了试样表面,又污染了样品室。可先在真空中压制成块[34],或在氦气光路中测量。为了减少压入片内空气的量,在装样时可轻拍样品,加压时要逐步增大压力,同时还要保压一定的时间[24]。X射线荧光分析是一种表面分析,尤其对于轻元素,分析时有效层厚度只有几个至十几个μm,表面的污染是致命的问题,同时还要求表面平滑。所以每次压片后都要把模具的表面洗净,隔一段时间还要对塞柱表面(对应于样片被测面)适当抛光[35]。试样在保存过程中也要防止表面污染、表面破损、吸潮、氧化、吸附空气等。最好是压片后尽快测量,对于标样、管理样等需长期保存的试样,以粉末状态密封保存较好,需要时临时压片。
    2.4 标准样品的制备
     X荧光分析是一种相对分析,标准样品的制备直接影响分析的准确度。粉末压片法的标样来源主要有三个:用其他方法分析试样;在成分已知的标样中加入某些成分;人工合成。谢琼心[36]用粉末压片法测定多金属矿中的Pb、Zn、Cu时,从待测试样中选取一组,并经化学法标定后作为标样,分析范围是Pb
    0.19%-79.29%、Zn 0.45%-50.11%、Cu 0.021%-31.1%。如果标样和试样从同一矿区中选取,且粒度相同,颗粒度效应和矿物效应的影响可以忽略,但标样的适用范围较窄。刘敏[37]以地球化学标样模拟石煤组分配制标样(国家级标样与石墨、纤维素粉按2∶1∶1混合磨匀)测定石煤中痕量镓,检出限为3.5μg/g, RSD为2.2%,类似的应用还有油页岩的分析[38]等。Zsolnay[31]分析土壤中痕量元素时,在SiO2-Na2CO3(1∶1)中加入50-500μg/g待分析元素,混合研磨后压片作为标样。对于一些含量较低的杂质组分,可采用逐级稀释法配制标准系列。对所有试样和标样,应采取严格相同的制样方法(包括研磨方法、研磨时间、压力、保压时间等), 确保标样和试样在粒度大小、粒度分布等方面的一致性。
    3 方法应用
    3.1 粉末压片法分析痕量元素
     粉末压片法多用于分析痕量元素配合熔融法分析主量元素,如:李国会[39]用粉末压片法分析橄榄岩中痕量元素Nb、Zr、Y、Sr、Rb、Pb、Zn、Ni、Co等,熔融法分析Na、Mg、Al、Si等主次量元素。准确度、精密度良好,RSD均小于8.6%。王毅民等[40]用粉末压片法测磷矿石中Na、F、Cl、I、Sr、Y等元素,熔融法测P、Ca、Mg、Al、Si等元素。F的检出限为0.25%,作者将探测器窗口由6μm改为1μm时,得到了近100μg/g的检出限。
    Schroeder.[34]用熔融法分析地质样品中主量元素(> 0.1 wt%), 用粉末压片法分析15个痕量元素(< 1000μg/g), 痕量元素的准确度和精确度为1%-5%。Uchida[41-43]等报道了用熔融法和粉末压片法分析硅酸盐岩石样品中主、次、痕量元素的方法,其中,文献[43]采用1.5g样品粉末和1.5g Li2B4O7混合压片。因为颗粒度效应对于长波分析线更加显著,所以对于原子序数较低的分析元素,要求研磨得更细,但实际上却很难做到。在“XRF分析岩石中痕量元素”一文中,Chappell[33]指出,对分析线的波长大于0.3nm,即原子序数在21(Sc)以下的K系谱线,用熔融法才能消除颗粒度效应。
    作者总结自己和许多其他人的经验,考虑了测量条件、基体校正及粉碎过程中的污染等问题,认为XRF法也是分析10-4%级痕量元素的有力手段。
    3.2 粉末压片法分析主、次、痕量元素
    粉末压片法也常用于地质、化探、冶金等样品的全分析,如:Longerich[44]用酚醛树脂作粘结剂压片分析了硅酸盐地质样品中的30个元素,Na、Mg的检出限为100μg/g, Rb、Y、Nb的检出限为0.6μg/g。
    Na-Cl未校正基体效应,K-Fe、Ba、Ce用Lachance-Trail方程进行校正,Ni-Nb、Pb、Th、U用Compton散射线内标法校正。马光祖和李国会[45]用低压聚乙烯作粘结剂压片分析了化探样品中30个元素(11Na - 92 U),14个主次量元素用经验系数法(50个标样回归分析)校正基体效应,16个痕量元素用散射线内标法进行校正。制样成功率高,用自动X射线光谱仪分析速度快。
    能量色散 (ED)
    XRF在地质、石油、环保等领域也发挥着重要的作用,Civici和Grieken[46]将EDXRF分析应用于化探分析中,Mn和Mo的二次靶分别用作低、中原子序数的激发源,Ba和一些稀土元素用Am-241作为激发源,粉末压片分析土壤、水泥等地质样品,一次可分析20-30个元素,分析速度快。Potts等[47]用一台便携式能量色散光谱仪(同位素激发源,HgI2探测器),粉末压片分析硅酸盐岩石样品,痕量元素Rb、Sr、Y、Zr、Nb的检出限为6-14μg/g,Ba为21μg/g,主量元素的分析精度为0.45%-2%( RSD),对70个标样进行分析,准确度很好。对波长色散和能量色散光谱仪分析硅酸盐岩石样品,已经有文献作了比较[48]。
    Bower和Valentine[49]详细比较了粉末压片法、不同稀释比的熔融法(加或不加重吸收剂La)。文中列出了地球化学标样中12种痕量元素在各种方法下分析的峰背比、检出限、精确度,可以看出粉末压片法给出的平均峰背比最高(计数时间短),检出限低,精确度也较好,但对能量较低的分析元素比熔融法差。
    3.3 熔融后再粉碎压片
     熔一块均匀、表面光滑的融片是一项技巧性很强的工作,有些样品不易脱模或容易碎裂,有的对Pt-Au坩埚有腐蚀作用,熔融后粉碎压片的方法(可用石墨坩埚代替Pt-Au坩埚)既可消除颗粒度效应的影响,又解决了不易成型的问题。陈永君用这种方法测定稀土氧化物的含量[25,50], 才书林等[51]对多种有色金属矿石标准物质中28个元素进行了定值。李国会[52]提出先在700℃氧化,熔融后再粉碎压片来测定地质试样中的全硫,这样可减小粉末样片保存过程中硫价态变化对分析准确度的影响。

    4 理论校正
    Pearce[35] 等做了颗粒度-粉碎时间,荧光强度-颗粒度,荧光强度-压力的变化曲线, 旨在确定粉碎时间和压力等因素。再次证实这样一个规律,即荧光强度随颗粒度的减小和压力的增大而增大(少数例外)。
    对荧光强度与颗粒度大小和压力的这种关系,早期Claisse和Semson[53-55]提出过定性的或半定量的解释,Blanquet, Berry, Hunter, Rhodes等[56-59]建立了许多理论模型,这些理论公式与实测结果在总体趋势上是一致的,但有许多假设条件,且只考虑了一次荧光。近年来,在计算粉末样品的荧光强度方面又作了许多工作,取得了一定的进展,尤其是Monte Carlo法成功地应用于不同物质各级荧光强度的计算[60-62]。如:Gunicheva等[63]提出的多相非均匀物质荧光强度计算的M-C模型,考虑了二次荧光和三次荧光,讨论了荧光强度与颗粒度大小、每一层的厚度及其他因子的关系,并与实验结果进行了比较。M-C法是一种数学方法,是根据一定的概率模型进行大量模拟实验,用统计方法求出我们所希望的数字特征的估计值。
    这种方法还被用于研究粉末制样误差与颗粒度的关系[64],结果表明,粉末制样引起的强度测量误差随颗粒度增大呈线性增长,随压紧率呈缓慢变化。
    在计算二次荧光时,假设荧光是沿着一定角度而不是向四面八方发散,Rossiger[65]讨论了多层样品的增强效应,Finkelshtein等[66]计算了多相物质(固相颗粒服从泊松定律)的荧光强度。后者还类似地应用于粉末样品的二次荧光强度计算[67],并以Fe-Cr-Ni体系的实测结果进行了验证,与M-C方法的推导结果相比,两者也是大体吻合的。在Rhodes[59], Dzabay[68]等人的基础上,刁桂年[69]建立了一个单层颗粒样品荧光强度计算模型,提出了粒度校正因子F,与颗粒的密度、粒径及颗粒的质量吸收系数有关。
    应该指出,除颗粒度效应外,还存在一种矿物效应,即不同矿物形态对荧光强度的影响,这是难以通过数学方法进行校正的。罗重庆等[70]将Plesch[71]选择基体校正元素方法应用到标准选择上,建立了标准选择判据,编制的计算软件可自动从大量标样中选择校正标准,较好地解决了矿物效应和基体效应的影响问题。该法用于粉末压片分析铁矿粉,方法快速,准确度和精密度均符合生产要求。
    一种理论模型的成功与否,要看它计算的结果与实验结果是否相符,同时要看这种模型与实际样品的近似程度。由于实际样品要考虑的因素很多,除颗粒大小、颗粒密度、颗粒形状、颗粒取向、颗粒分布以外,还要考虑颗粒组成及颗粒内部的元素分布等[69],其中有些参数是难以获得的。因此,现在已逐步向实际情况靠近,但离一种较理想的理论模型,差距还很远。随着理论模型的不断完善和测定技术的全面进步,这一难题期望有较大突破。
    5 结束语
      一般来说,对于煤、水泥、岩石、土壤等样品的常规分析,用粉末压片法可达到分析精度和准确度为5%左右的要求。大多数痕量元素的检出限可达100μg/g左右,因XRF光谱仪有较好的稳定性,还可通过延长计数时间使检出限进一步降低。用粉末压片法制样,结合自动进样装置和自动化分析仪,一次即可准确地分析20-30种元素,完全可以满足地质、矿产、商检等部门的分析需要。
      如前所述,粉末压片是根据一定的分析对象进行试验,以选择制样条件,包括各种添加剂的使用、粉碎时间、压力、标样的选取等。这样造成的结果是,对一种分析对象提出的方法不能应用到其它试样中去。关键是尚未找到一种实用有效的粉碎技术,可将粉末试样碎至1-2μm,这种粉碎技术要简单易行,否则就失去了X荧光分析快速方便的特点。

我的存档

数据统计

  • 访问量: 0
  • 建立时间: 2021-09-07
  • 更新时间: 2021-09-07

RSS订阅

Open Toolbar