生化实验讲义(理论部分)二--生物大分子的制备(二)

上一篇 / 下一篇  2008-09-26 12:11:15/ 个人分类:生化检验

2.3.2 透析

自Thomas Graham 1861年发明透析方法至今已有一百多年。透析已成为生物化学实验室最简便最常用的分离纯化技术之一。在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。

透析只需要使用专用的半透膜即可完成。通常是将半透膜制成袋状,将生物大分子样品溶液置入袋内,将此透析袋浸入水或缓冲液中,样品溶液中的大分子量的生物大分子被截留在袋内,而盐和小分子物质不断扩散透析到袋外,直到袋内外两边的浓度达到平衡为止。保留在透析袋内未透析出的样品溶液称为“保留液”,袋(膜)外的溶液称为“渗出液”或“透析液”。

透析的动力是扩散压,扩散压是由横跨膜两边的浓度梯度形成的。透析的速度反比于膜的厚度,正比于欲透析的小分子溶质在膜内外两边的浓度梯度,还正比于膜的面积和温度,通常是4℃透析,升高温度可加快透析速度。

透析膜可用动物膜和玻璃纸等,但用的最多的还是用纤维素制成的透析膜,目前常用的是美国Union Carbide (联合碳化物公司)和美国光谱医学公司生产的各种尺寸的透析管,截留分子量MwCO(即留在透析袋内的生物大分子的最小分子量,缩写为MwCO)通常为1万左右。

商品透析袋制成管状,其扁平宽度为23 mm~50 mm不等。为防干裂,出厂时都用10%的甘油处理过,并含有极微量的硫化物、重金属和一些具有紫外吸收的杂质,它们对蛋白和其它生物活性物质有害,用前必须除去。可先用50%乙醇煮沸1小时,再依次用50%乙醇、0.01 mol/L碳酸氢钠和0.001 mol/L EDTA溶液洗涤,最后用蒸馏水冲洗即可使用。实验证明,50%乙醇处理对除去具有紫外吸收的杂质特别有效。使用后的透析袋洗净后可存于4℃蒸馏水中,若长时间不用,可加少量NaN2,以防长菌。洗净凉干的透析袋弯折时易裂口,用时必须仔细检查,不漏时方可重复使用。

新透析袋如不作如上的特殊处理,则可用沸水煮五至十分钟,再用蒸馏水洗净,即可使用。使用时,一端用橡皮筋或线绳扎紧,也可以使用特制的透析袋夹夹紧,由另一端灌满水,用手指稍加压,检查不漏,方可装入待透析液,通常要留三分之一至一半的空间,以防透析过程中,透析的小分子量较大时,袋外的水和缓冲液过量进入袋内将袋涨破。含盐量很高的蛋白质溶液透析过夜时,体积增加50%是正常的。为了加快透析速度,除多次更换透析液外,还可使用磁子搅拌。透析的容器要大一些,可以使用大烧杯、大量筒和塑料桶。小量体积溶液的透析,可在袋内放一截两头烧园的玻璃棒或两端封口的玻璃管,以使透析袋沉入液面以下。

检查透析效果的方法是:用1% BaCl2检查(NH4)2SO4,用1% AgNO3 检查NaCl、KCl等。

为了提高透析效率,还可以使用各种透析装置。使用者也可以自行设计与制作各种简易的透析装置。美国生物医学公司(Biomed Instruments Inc.)生产的各种型号的Zeineh 透析器,由于使用对流透析的原理,使透析速度和效率大大提高。

2.3.3 超滤

超过滤即超滤,自20年代问世后,直至60年代以来发展迅速,很快由实验室规模的分离手段发展成重要的工业单元操作技术。超滤现已成为一种重要的生化实验技术,广泛用于含有各种小分子溶质的各种生物大分子(如蛋白质、酶、核酸等)的浓缩、分离和纯化。

超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。

超滤根据所加的操作压力和所用膜的平均孔径的不同,可分为微孔过滤、超滤和反渗透三种。微孔过滤所用的操作压通常小于4×104 Pa,膜的平均孔径为500埃~14微米(1微米=104埃),用于分离较大的微粒、细菌和污染物等。超滤所用操作压为4×104 Pa~7×105 Pa,膜的平均孔径为10—100埃,用于分离大分子溶质。反渗透所用的操作压比超滤更大,常达到35×105 Pa~140×105 Pa,膜的平均孔径最小,一般为10埃以下,用于分离小分子溶质,如海水脱盐,制高纯水等。

超滤技术的优点是操作简便,成本低廉,不需增加任何化学试剂,尤其是超滤技术的实验条件温和,与蒸发、冰冻干燥相比没有相的变化,而且不引起温度、pH的变化,因而可以防止生物大分子的变性、失活和自溶。

在生物大分子的制备技术中,超滤主要用于生物大分子的脱盐、脱水和浓缩等。

超滤法也有一定的局限性,它不能直接得到干粉制剂。对于蛋白质溶液,一般只能得到10~50%的浓度。

超滤技术的关键是膜。膜有各种不同的类型和规格,可根据工作的需要来选用。早期的膜是各向同性的均匀膜,即现在常用的微孔薄膜,其孔径通常是0.05?m 和0.025?m。近几年来生产了一些各向异性的不对称超滤膜,其中一种各向异性扩散膜是由一层非常薄的、具有一定孔径的多孔“皮肤层”(厚约0.1?m ~1.0?m ),和一层相对厚得多的(约1?m )更易通渗的、作为支撑用的“海绵层”组成。皮肤层决定了膜的选择性,而海绵层增加了机械强度。由于皮肤层非常薄,因此高效、通透性好、流量大,且不易被溶质阻塞而导致流速下降。常用的膜一般是由乙酸纤维或硝酸纤维或此二者的混合物制成。近年来为适应制药和食品工业上灭菌的需要,发展了非纤维型的各向异性膜,例如聚砜膜、聚砜酰胺膜和聚丙烯腈膜等。这种膜在pH 1~14都是稳定的,且能在90℃下正常工作。超滤膜通常是比较稳定的,若使用恰当,能连续用1~2年。暂时不用,可浸在1%甲醛溶液或0.2% 叠氮化钠NaN3中保存。

超滤膜的基本性能指标主要有:水通量(cm3/(cm2•h));截留率(以百分率%表示);化学物理稳定性(包括机械强度)等。

超滤装置一般由若干超滤组件构成。通常可分为板框式、管式、螺旋卷式和中空纤维式四种主要类型。由于超滤法处理的液体多数是含有水溶性生物大分子、有机胶体、多糖及微生物等。这些物质极易粘附和沉积于膜表面上,造成严重的浓差极化和堵塞,这是超滤法最关键的问题,要克服浓差极化,通常可加大液体流量,加强湍流和加强搅拌。

国外生产超滤膜和超滤装置最有名的厂家是美国的Milipore公司和德国的Sartorius公司。国内主要的研究机构和生产厂家是:中科院生态环境研究中心、杭州淡化和水处理开发中心、兰州膜科学技术研究所、无锡化工研究所、上海医药工业研究所、天津膜分离工程研究所、北京化工厂、常熟膜分离实验厂、无锡市超滤设备厂、无锡纯水设备厂、天津超滤设备厂、湖北沙市水处理设备厂等。从膜的品种,以及从某些研究工作的深度方面看,我国与世畀先进国家的差距不很大,但在膜的质量性能及商品化方面尚有较大差距。

在生物制品中应用超滤法有很高的经济效益,例如供静脉注射的25%人胎盘血白蛋白(即胎白)通常是用硫酸铵盐析法、透析脱盐、真空浓缩等工艺制备的,该工艺流程硫酸铵耗量大,能源消耗多,操诈时间长,透析过程易产生污染。改用超滤工艺后,平均回收率可达97.18%;吸附损失为1.69%;透过损失为1.23%;截留率为98.77%。大幅度提高了白蛋白的产量和质量,每年可节省硫酸铵6.2吨,自来水16000吨。

超滤技术的应用有很好的前景,应引起足够的重视。

2.3.4 冰冻干燥

冰冻干燥机是生化与分子生物学实验室必备的仪器之一,因为大多数生物大分子分离纯化后的最终产品多数是水溶液,要从水溶液中得到固体产品,最好的办法就是冰冻干燥,因为生物大分子容易失活,通常不能使用加热蒸发浓缩的方法。

冰冻干燥是先将生物大分子的水溶液冰冻,然后在低温和高真空下使冰升华,留下固体干粉。

冰冻干燥得到的生物大分子固体样品有突出的优点:①由于是由冰冻状态直接升华为汽态,所以样品不起泡,不暴沸。②得到的干粉样品不粘壁,易取出。③冰干后的样品是疏松的粉末,易溶于水。

冰冻干燥特别适用于那些对热敏感、易吸湿、易氧化及溶剂蒸发时易产生泡沫而引起变性的生物大分子,如蛋白质、酶、核酸、抗菌素和激素等。对于极个别的在冻干时易变性失活的生物大分子则要十分谨慎,务必先做小量试验证明冻干无害后方可进行大量处理。

冰冻干燥机的国产品牌近年来发展很快。如北京的军事医学科学院生产的小型、中型和大型工业用冰干机,已可以取代昂贵的进口产品。在实验室中还可以自已组装小型简易的冰冻干燥器。①准备一个较大的玻璃真空干燥器,将样品置于小培养皿中速冻后放入干燥器内,器内已事先用两个小培养皿分别盛有KOH(或NaOH) 和 P2O5,干燥器通过一个两端塞上棉花其中装满P2O5的干燥管与真空泵相连,抽真空后,经过5~10小时就可以得到冰冻干燥的样品。②将样品溶液置于一个园底烧并内,将烧并浸入干冰~乙醇低温浴(-60℃)中,样品即被速冻成冰块,将烧并标准磨口通过磨口管与一个冷阱相连,冷阱内放有干冰~乙醇混合液,冷阱的另一个出口管与真空泵相连,抽真空时汽化的水汽就冻结在冷阱的内壁上,抽真空数小时后即可在烧并中得到冻干的样品。此简易装置也可用于冻干含有少量乙醇、甲醇、丙酮等常用有机溶剂的样品,可重复以下的操作除去这些有机溶剂:样品速冻→→抽真空至恒定→→使样品升温至室温挥发有机溶剂→→再速冻样品,如此反复多次,以除尽有机溶剂,否则样品不易冻干,且泵前应装有保护真空泵的缓冲并,以吸收水份和有机溶剂。

冰冻干燥特别适用于那些对热敏感、易吸湿、易氧化及溶剂蒸发时易产生泡沫而引起变性的生物大分子,如蛋白质、酶、核酸、抗菌素和激素等。对于极个别的在冻干时易变性失活的生物大分子则要十分谨慎,务必先做小量试验证明冻干无害后方可进行大量处理。

冰冻干燥机的国产品牌近年来发展很快。如北京的军事医学科学院生产的小型、中型和大型工业用冰干机,已可以取代昂贵的进口产品。在实验室中还可以自已组装小型简易的冰冻干燥器。①准备一个较大的玻璃真空干燥器,将样品置于小培养皿中速冻后放入干燥器内,器内已事先用两个小培养皿分别盛有KOH(或NaOH) 和 P2O5,干燥器通过一个两端塞上棉花其中装满P2O5的干燥管与真空泵相连,抽真空后,经过5~10小时就可以得到冰冻干燥的样品。②将样品溶液置于一个园底烧并内,将烧并浸入干冰~乙醇低温浴(-60℃)中,样品即被速冻成冰块,将烧并标准磨口通过磨口管与一个冷阱相连,冷阱内放有干冰~乙醇混合液,冷阱的另一个出口管与真空泵相连,抽真空时汽化的水汽就冻结在冷阱的内壁上,抽真空数小时后即可在烧并中得到冻干的样品。此简易装置也可用于冻干含有少量乙醇、甲醇、丙酮等常用有机溶剂的样品,可重复以下的操作除去这些有机溶剂:样品速冻→→抽真空至恒定→→使样品升温至室温挥发有机溶剂→→再速冻样品,如此反复多次,以除尽有机溶剂,否则样品不易冻干,且泵前应装有保护真空泵的缓冲并,以吸收水份和有机溶剂。冰冻干燥操作虽然十分简单,但以下的注意事项却必须认真记取:

⑴样品溶液:①样品要溶于水,不含有机溶剂,否则会造成冰点降低,冰冻的样品容易融化,因而减压时会起大量泡沫,使样品变性、污染和损失。同时若含有有机溶剂,被抽入真空泵后溶于真空泵油,使其可达真空度降低而必须换油。②样品要予先脱盐,不可使盐浓度过高,否则冰冻后易融化,影响样品活性,而且不易冻干。③样品缓冲液在冰冻时pH可能会有较大变化,例如pH 7.0的磷酸盐缓冲液在冰冻时,磷酸氢二钠比磷酸二氢钠先冻结,因而使溶液pH下降而接近3.5,使某些对低pH敏感的酶变性失活,此时需加入pH稳定剂,如糖类和钙离子等。④样品溶液的浓度不要过稀,例如蛋白质的浓度不低于15 mg/mL 为宜。同批冻干的样品液浓度不宜相差太大,以免冻干的时间相差过大。

⑵装样品溶液的容器:①最好用各种尺寸的培养皿盛样品溶液,液层不要太厚,以免冻干时间太长,耗电太多。也可以使用安瓿并和青霉素小并。用烧杯时液层厚度不要超过2 cm,否则烧杯易冻裂。②冻干稀溶液时会得到很轻的绒毛状固体样品,容易飞散而损失和造成污染,因而要用刺了孔的薄膜或吸水纸包住杯口,刺的孔不要过小过少,否则会影响冻干速度。

⑶溶液冰冻:如有条件,尽可能用干冰~乙醇低温浴速冻,如能将盛有样品溶液的容器边冻边旋转形成很薄的冰冻层,则可以大大加快冻干的速度。

⑷冻干:①样品全部冻干前,不要轻易摇动,以防水蒸汽冲散冻干的样品粉末。②样品冻干达到较高真空度时,容器外部有时会结霜,若外霜消失,则说明样品已冻干,或是仅剩样品中心的小冰块,再稍加延长冻干时间即可。③冻干后要及时取出样品,以免样品在室温下仃留时间过长而失活。④仃真空泵时要先放气,以免泵油倒灌。放气时要缓慢,以免气流冲散样品干粉。⑤样品冻干后要及时密封冷藏,以防受潮。⑥真空泵要经常检查油面和油色,油面过低和油色发黑,则需换油,通常半年或一季度至少要换一次油。

2.3.5 样品的保存

生物大分子制成品的正确保存极为重要,一旦保存不当,辛辛苦苦制成的样品失活、变性、变质,使前面的全部制备工作化为乌有,损失惨重,全功尽弃。

影响生物大分子样品保存的主要因素有:

空气:空气的影响主要是潮解、微生物污染和自动氧化。空气中微生物的污染可使样品腐败变质,样品吸湿后会引起潮解变性,同时也为微生物污染提供了有利的条件。某些样品与空气中的氧接触会自发引起游离基链式反应,还原性强的样品易氧化变质和失活,如维生素C、巯基酶等。

⑵温度:每种生物大分子都有其稳定的温度范围,温度升高10℃,氧化反应约加快数倍,酶促反应增加1~3倍。因此通常绝大多数样品都是低温保存,以抑制氧化、水解等化学反应和微生物的生成。

⑶水份:包括样品本身所带的水份和由空气中吸收的水份。水可以参加水解、酶解、水合和加合。加速氧化、聚合、离解和霉变。

⑷光线:某些生物大分子可以吸收一定波长的光,使分子活化不利于样品保存,尤其日光中的紫外线能量大,对生物大分子制品影响最大,样品受光催化的反应有变色、氧化和分解等,通称光化作用。因此样品通常都要避光保存。

⑸样品的pH:保存液态样品时注意其稳定的pH范围,通常可从文献和手册中查得或做实验求得,因此正确选择保存液态样品的缓冲剂的种类和浓度就十分重要。

⑹时间:生化和分子生物学样品不可能永久存活,不同的样品有其不同的有效期,因此,保存的样品必须写明日期,定期检查和处理。

现以保存蛋白质和酶为例:

⑴低温下保存:由于多数蛋白质和酶对热敏感,通常35℃~40℃以上就会失活,冷藏于冰箱一般只能保存一周左右,而且蛋白质和酶越纯越不稳定,溶液状态比固态更不稳定。因此通常要保存于-5℃~-20℃,如能在-70℃下保存则最为理想。极少数酶可以耐热:如核糖核酸酶可以短时煮沸;胰蛋白酶在稀HCl中可以耐受90℃;蔗糖酶在50℃~60℃可以保持15 min~30 min不失活。还有少数酶对低温敏感,如鸟肝丙酮酸羧化酶25℃稳定,低温下失活,过氧化氢酶要在0℃~4℃保存,冰冻则失活,羧肽酶反复冻融会失活等。

⑵制成干粉或结晶保存:蛋白质和酶固态比在溶液中要稳定的多。固态干粉制剂放在干燥剂中可长期保存,例如葡萄糖氧化酶干粉0℃下可保存2年,-15℃下可保存8年。通常,酶与蛋白质含水量大于10%,室温低温下均易失活,含水量小于5%时,37℃活性会下降,如要抑制微生物活性,含水量要小于10%,抑制化学活性,含水量要小于3%。此外要特别注意酶在冻干时往往会部分失活。

⑶在保护剂下保存:很早就有人观察到,在无菌条件下,室温保存了45年的血液,血红蛋白仅有少量改变,许多酶仍保留部分活性,这是因为血液中有蛋白质稳定的因素,为了长期保存蛋白质和酶,常常要加入某些稳定剂:例如:①惰性的生化或有机物质:如糖类、脂肪酸、牛血清白蛋白、氨基酸、多元醇等,以保持稳定的疏水环境。②中性盐:有一些蛋白质要求在高离子强度(1 mol/L~4mol/L或饱和的盐溶液)的极性环境中才能保持活性。最常用的是:MgSO4、NaCl、(NH4)SO4等。使用时要脱盐。③巯基试剂:一些蛋白质和酶的表面或内部含有半胱氨酸巯基,易被空气中的氧缓馒氧化为磺酸或二硫化物而变性,保存时可加入半胱氨酸或巯基乙醇。

总之,对样品的保存必须给以只够的重视,一些常用酶的保存条件可参见《生物化学制备技术》(苏拔贤主编)一书中的“一些酶保存的条件和稳定性”表,其他各种生物大分子和生物制剂的保存条件,可查阅有关的文献和酶学手册。

2.3.6 分离纯化方法的选择

生物大分子能否高效率地制备成功,关键在于分离纯化方案的正确选择和各个分离纯化方法实验条件的探索。选择与探索的依据就是生物大分子与杂质之间的生物学和物理化学性质上的差异。由本章前述的生物大分子制备的各种特点可以看出,分离纯化方案必然是千变万化的。

制备生物大分子的方法可以粗略地分类如下:① 以分子大小和形态的差异为依据的方法:差速离心、区带离心、超滤、透析和凝胶过滤等。② 以溶解度的差异为依据的方法:盐析、萃取、分配层析、选择性沉淀和结晶等。③ 以电荷差异为依据的方法:电泳、电渗析、等电点沉淀、吸附层析和离子交换层析等。④ 以生物学功能专一性为依据的方法:亲和层析等。

在分离纯化流程中,早期和晚期的分离纯化方法的选择有明显的不同:

⑴ 早期分离纯化

1) 特点:①粗提取液中物质成份十分复杂。②欲制备的生物大分子浓度很稀。

③物理化学性质相近的物质很多。④希望能除去大部分与目的产物物理化学性质差异大的杂质。

2) 对所选方法的要求:①要快速、粗放。②能较大地缩小体积。③分辨力不必太高。④负荷能力要大。

3) 可选用的方法:吸附;萃取;沉淀法(热变性、盐析、有机溶剂沉淀等);离子交换(批量吸附、胖柱交换);亲和层析等。

⑵晚期分离纯化

1) 可选用的方法:吸附层析、盐析、凝胶过滤、离子交换层析、亲和层析、等电聚焦制备电泳、制备HPLC等。

2)要注意的一些问题:

①盐析后要及时脱盐。

②用凝胶过滤时如何缩小上样体积,因为凝胶层析柱的上样体积只能是柱床体积的1/10~1/6,也可以使用串联柱以加大柱床体积。

③必要时也可以重复使用同一种分离纯化方法,例如分级有机溶剂沉淀,分级盐析,连续两次凝胶过滤或离子交换层析等。

④分离纯化步骤前后要有科学的安排和衔接,尽可能减少工序,提高效率。例如吸附不可以放在盐析之后,以免大量盐离子影响吸附效率;离子交换要放在凝胶过滤之前,因为离子交换层析的上样量可以不受限制,只要不超过柱交换容量即可。

⑤分离纯化后期,目的产物的纯度和浓度都大大提高,此时对于很多敏感的酶极易变性失活,因此操作步骤要连续、紧凑,尽可能在低温下(如在冷室中)进行。

⑥得到最终产品后,必要时要立即冰冻干燥,分装并写明标签,-20℃ 或

-70℃保存。


TAG: 实验生化生物大分子

老汉 引用 删除 老汉   /   2011-03-25 16:20:24
5
被淹死的鱼 引用 删除 l0802102   /   2008-10-15 14:52:19
多谢楼主分享
被淹死的鱼 引用 删除 l0802102   /   2008-10-15 14:51:49
非常精彩
 

评分:0

我来说两句

显示全部

:loveliness::handshake:victory::funk::time::kiss::call::hug::lol:'(:Q:L;P:$:P:o:@:D:(:)

Open Toolbar