首页 行业 移动快检食品环境先进材料化工生命科学制药临床 导购 电商 仪器谱 直播 前沿Lab 博客 会议 人才 搜索
弱光非线性光子学教育部重点实验室 

弱光非线性光子学教育部重点实验室 

400-6699-117转1000

1、实验室研究方向与主要研究内容
本实验室主要开展弱光非线性光子学材料的先进制备技术及相关器件的研究工作,结合本实验室的研究基础,针对材料缺陷调控技术及弱光非线性光子学效应研究、色散工程与量子微结构材料、三元系非线性光子学晶体生长技术优化研究和薄膜光电子材料相结构调制技术等研究方向,集中优势,开展研究工作,以解决材料缺陷模型、光子与物质的量子相互作用等基本物理基础问题,开发材料缺陷控制技术、可控量子微结构制备技术等材料先进技术,开发实用型的弱光非线性光子学材料、器件并推动其产业化。
2、实验室近期主要研究内容
1) Photonics Material and Advanced Fabrication Technique
光子学材料与先进制备技术
A. 材料缺陷调控技术与弱光非线性光子学效应研究
从硅材料的发展历史可知,缺陷研究与调控对于器件性能调控具有十分关键的作用。没有多年来对硅单晶缺陷结构的深入研究及随后开展的半导体缺陷调控技术的发展,就不可能有当今微电子、大规模集成电路等的蓬勃发展。弱光非线性光子学材料的发展也需要走同样的道路。本方向通过研究材料的缺陷微结构,确定材料(如铌酸锂、钽酸锂、 BCT 等)中本征缺陷、非本征缺陷对材料弱光非线性光子学特性的影响。开发高效光子学材料缺陷调控技术(如掺杂工程等),通过对缺陷的调整,优化材料弱光非线性光子学性质,开发具有优良弱光非线性光子学特性的新材料。由此,为非线性光子学材料的研究提供实验与理论依据,指导新型光子学材料的开发和优化,发现新的弱光非线性光子学效应及其应用。主要研究内容包括:
弱光非线性光子学材料本征缺陷与非本征缺陷微结构研究;
掺杂工程、处理工艺、光与射线辐照等缺陷调控技术研究;
新型光子学材料中弱光非线性光子学性能与缺陷结构研究;
以铌酸锂晶体为代表的弱光非线性光子学材料缺陷能带理论与缺陷调控技术。
B. 色散工程与量子微结构材料
光子学材料的弱光非线性特性主要依赖于材料的介电特性。本方向研究光诱导技术、电诱导技术等高效色散工程方法,调控光子学材料的介电性质,在光子学材料中制作针对光子的量子微结构。研究光子学量子微结构中的弱光非线性效应,深入探讨光子与物质之间的相互作用,研究量子相干系综中的巨光学非线性。本方向使弱光光子学及材料的研究由体材料深入到量子效应起主导作用的微结构层面,从而加深我们对光子本性及光子与物质相互作用的物理机制的认识,并有助于我们开发新型光子学材料与器件。本方向主要研究内容包括:
以铌酸锂晶体为材料平台的色散工程技术与新型光子学量子器件材料研究;
基于电、光致畴反转与微畴产生,光致晶化和光致玻璃化等手段的光子学量子微结构材料制备技术与色散工程的研究;
新型量子相干系统的构造技术与材料巨光学非线性特性研究;
弱光非线性光子学缺陷微结构、缺陷控制。
研究弱光非线性光子学材料中的缺陷微结构、缺陷控制及其对光电功能的影响作用,为非线性光子学材料的研究提供实验与理论依据,指导新型光子学材料的开发和优化。内容包括: 1 )弱光非线性光子学材料本征缺陷与非本征缺陷微结构研究; 2 )掺杂工程、后处理工艺、光与射线辐照等缺陷调控技术机理与弱光非线性光子学特性研究; 3 )弱光非线性光子学性能与缺陷能带理论计算等。
C. 三元系非线性光子学晶体生长技术优化研究
三元系晶体是非线性光子学材料的重要分支(如铌酸锂、铌酸钾、钽酸锂、偏硼酸钡、钛酸钡等)。本方向以铌酸锂晶体为切入点,研究三元系非线性光子学晶体生长中缺陷动力学,探索三元系晶体中杂质占位演化过程,研究晶体生长原料分凝效应调控技术。通过研究,开发大尺寸光学级三元系非线性光子学材料生长技术。该方向的研究成果有助于非线性光子学晶体的进一步商业化。主要研究方向包括:
三元系晶体中杂质占位演化过程与晶体生长原料分凝效应调控技术等晶体生长关键技术;
大尺寸光学级三元系非线性光子学材料生长技术。
D. 高性能低维光子学材料的制备及功能特性的研究
本研究从光子学材料的功能性出发,采用新的科学思想和先进的制备技术,通过多相掺杂、复合等技术调控,设计、构建和研制新型结构高性能、高效率低维光子学功能材料。利用先进的科学仪器和表征技术,从微观分子水平研究新型低维光子学功能材料晶体结构、能带结构、表面微结构和光致表面、界面稳态、瞬态电荷转移、驰豫过程,揭示其功能性机理。建立和完善制备新型光子学功能材料的新技术,并开展其实际应用的探索性研究。
主要研究内容:
研究制备工艺和调控技术对光子学材料的性质及功能性的影响。
研究晶体结构、能带结构、表面微结构对功能性的影响。
研究光致表面、界面电子过程和瞬态电荷转移、驰豫、复合的竞争机制,从根本上揭示其功能性机理。
E. 半导体量子材料与器件
近年来,随着纳米技术与光电信息技术的结合,诸多新的量子物理效应被发现,一系列的新型光电信息材料和器件涌现。对基于低维结构的光电信息功能材料及器件的研究是当前纳米科技的非常活跃的研究前沿。这一类材料以其奇特的低维量子效应、丰富的生长动力学过程等深层次的物理和化学现象为各类光电信息功能材料的结构设计和人工剪裁提供了一个广阔的想象空间,使得光电信息功能材料成为一个科学内涵丰富、创新性强、应用前景广阔、社会经济效益巨大的领域。我们将结合我们的工作情况和基础集中研究以下几方面的内容:
研究量子阱、量子线及量子点的近 / 中红外波段的光电响应、级联光放大等特性, 如 1.3 μ m 波段 InAs 和 InGaAs/InP 量子点的物理特性, InGaAs/GaAs 应变量子阱或量子点的制备与其量子特性等,发展量子点生长的有序控制技术,完善 InAs 和 InGaAs/InP 量子点生长工艺,并制作适用于光通讯波段的量子点激光器原型器件,近 / 中红外波段量子级联激光器,以及相应探测器件等;
纳米量子相干微结构的制备与电致透明巨光学非线性效应及应用;
纳米光子学研究光子学材料成膜过程结晶、组分变化等基本问题研究与高速制备薄膜光子学材料技术,薄膜材料通过掺杂工程和“诱导”效应进行的相结构调变技术研究,研制新型薄膜非线性光子学器件。
2) Nonlinear Optics at Weak Light and Mecroscopic Quantum Coherent Optics
弱光非线性光子学与介观量子相干光学
光学与光子学作为技术的基础与应用密切结合的学科,其基础研究的水平决定了学科及其技术发展的实力。随着光学与光子学基础研究的发展,新的光学现象和光学技术不断被发现,研究对象已深入到微观尺度,量子工具被广泛应用于光学与光子学的研究。我们将集中解决以下与现代光学技术密切相关的光子学基本科学问题:
A.光在凝聚态物质中的传播特性
研究光在非线性介质中传播的快速、高精度分析方法,重点研究新型晶体、玻璃、有机及高分子材料的非线性光学传输与发光特性,为发展新型三维光存储与显示机理,开发新型光子学全息器件提供理论指导;
研究超短光脉冲和物质相互作用(尤其是光子学微结构)的瞬态光学过程及非线性特性,研究快速超分辨高维光谱成像技术机理,研究超快光存储技术及其光子学微结构刻录技术机理;
研究纳米尺度局域电子系统的 光学特性,电子与光子相互作用机理,为开发纳米非线性光子学器件开辟方向;
可调谐激光腔设计。
B.量子相干系综的非线性光学效应
集中研究光在固体量子相干系综中的传播动力学及慢光速条件下的巨光学非线性效应;研究光子学晶格(非相干空间孤子致非相干孤子列阵)与空间孤子相互作用及其非相干非线性光学效应;光子学微结构材料中左手特性与负折射率效应;亚波长级光学衍射和传播动力学等。
3) Spectral Characterization and Sensor Techniques
光谱表征与传感技术
分子水平微观物理量和化学量的光谱传感原理与技术和科学仪器通用软件平台。
分子光子学以量子力学理论为基础,从原子分子水平上研究光子学材料和器件中的光与物质相互作用现象和本质。各种光谱学方法和仪器是分子光子学研究的得力工具。本研究室建有显微拉曼光谱实验室(属于“ 211 工程”《高等学校仪器设备和优质资源共享系统平台》项目首批选定的对外开放仪器),傅立叶变换红外光谱实验室,成像光谱实验室,调制光谱实验室,应用光谱学实验室和软件实验室。研究室近年来对弱光非线性材料铌酸锂晶体本征和非本征缺陷,半导体自组装量子点,非晶硅半导体光致晶化相变和有机半导体聚合物等开展了光学与光谱学表征工作研究。
近年来,光谱技术正经历一场革命性的变化,由传统的离线测量走向现场(原位,在线,试验场和自然环境),并被广泛用于医学,农业,石油化工,食品,药品,半导体,环保,地质,刑侦和军事侦察等领域,已逐渐形成一门极具发展前景的高科技技术学科。研究室在对光子学材料进行光谱学表征工作的同时积极研究开发现场或在线分子水平微观物理和化学量的光谱传感技术和小型便携组合式现场光谱仪器与系统。本研究室曾承担并完成“九五”国家科技攻关计划“光谱检测及样品制备研究与开发”专题,《小型快速化学反应过程光谱检测仪》通过省部级鉴定,达到国际先进水平。
随着近年来计算机技术的迅猛发展和科学仪器水平的进一步提高,为了使科学仪器的适用范围更宽广,测量精度更精确,使用功能更智能化,发展科学仪器软件势在必行。本研究室承担并完成了“十五”科技攻关重大项目《科学仪器研究与开发》中“科学仪器通用软件平台研究与开发”课题,并在此基础上开展有关测试计量与仪器智能化的应用研究与开发。
4) Nonlinear Physics and Materials
非线性物理与材料
本实验室从事非线性光学及应用、激光材料及应用等方面的研究。从事的主要研究包括:
新型有机及高分子材料色散调控技术与的光学非线性及应用;
光在非线性介质中传播的快速、高精度分析方法的研究;
玻璃和晶体材料的光学与激光特性的研究;
研究光在外场下的生物组织中和生物界面的传播特性,为用于人体功能与疾病的无伤害光子诊断技术奠定基础等。

进入实验室博客

相关实验室