实验方法> 细胞技术> 细胞功能测定>Methods to Study Transcription-Coupled Repair in Chromatin

Methods to Study Transcription-Coupled Repair in Chromatin

关键词: methods study transcription来源: 互联网

Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair that allows for the enhanced repair of the transcribed strand of active genes. A classical method to study DNA repair in vivo consists in the molecular analysis of UV-induced DNA damages at specific loci. Cells are irradiated with a defined dose of UV light leading to the formation of DNA lesions and incubated in the dark to allow repair. About 90% of the photoproducts consist of cyclobutane pyrimidine dimers, which can be cleaved by the DNA nicking activity of the T4 endonuclease V (T4endoV) repair enzyme. Strand-specific repair in a suitable restriction fragment is determined by alkaline gel electrophoresis followed by Southern blot transfer and indirect end-labeling using a single-stranded probe. Recent approaches have assessed the role of transcription factors in TCR by analyzing RNA polymerase II occupancy on a damaged template by chromatin immunoprecipitation (ChIP). Cells are treated with formaldehyde in vivo to cross-link proteins to DNA and enrichment of a protein of interest is done by subsequent immunoprecipitation. Upon reversal of the protein–DNA cross-links, the amount of coprecipitated DNA fragments can be detected by quantitative PCR. To perform ChIP on UV-damaged templates, we included an in vitro photoreactivation step prior to PCR analysis to ensure that all precipitated DNA fragments serve as substrates for the PCR reaction. Here, we provide a detailed protocol for both the DNA repair analysis and the ChIP approaches to study TCR in chromatin.

推荐方法

Copyright ©2007 ANTPedia, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号