实验方法> 细胞技术> 细胞功能测定>Inducible raptor and rictor Knockout Mouse Embryonic Fibroblasts

Inducible raptor and rictor Knockout Mouse Embryonic Fibroblasts

关键词: inducible raptor来源: 互联网

The mammalian Target of Rapamycin (mTOR) kinase functions within two structurally and functionally distinct multiprotein complexes termed mTOR complex 1 (mTORC1) and mTORC2. The immunosuppressant and anticancer drug rapamycin is commonly used in basic research as a tool to study mTOR signaling. However, rapamycin inhibits only, and only incompletely, mTORC1, and no mTORC2-specific inhibitor is available. Hence, a full understanding of mTOR signaling in vivo, including the function of both complexes, requires genetic inhibition in addition to pharmacological inhibition. Taking advantage of the Cre/LoxP system, we generated inducible knockout mouse embryonic fibroblasts (MEFs) deficient for either the mTORC1-specific component raptor (iRapKO) or the mTORC2-specific component rictor (iRicKO). Inducibility of the knockout was important because mTOR complex components are essential. Induction of either raptor or rictor knockout eliminated raptor or rictor expression, respectively, and impaired the corresponding mTOR signaling branch. The described knockout MEFs are a valuable tool to study the full function of the two mTOR complexes individually.

推荐方法

Copyright ©2007 ANTPedia, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号