实验方法> 实验仪器使用技术> 神经生物学>Subcellular Fractionation of Brain Tissue Using Free-Flow Electrophoresis

Subcellular Fractionation of Brain Tissue Using Free-Flow Electrophoresis

关键词: subcellular fractionation brain tissue来源: 互联网

Accurate annotation of protein identifications in organellar proteomics highly depends on the sample quality with special respect to contaminations from other subcellular compartments. In this respect, Free-flow electrophoresis (FFE) offers a valuable alternative to classical centrifugation techniques, since it relies on quite different physical parameters. During the last years, FFE has been successfully used for the separation of various organelles from different tissues, yet is largely unknown in the field of neurobiology. Here we present two separation schemes for the fractionation of a synaptic preparation from rat brain using different modes of FFE. Isotachophoresis (ITP), a focusing technique separating organelles according to their electrophoretic mobilities, was able to distribute the synaptosome sample into different subfractions: mitochondrial cross contaminations showed the highest electrophoretic mobility and migrated nearest to the anode of the FFE instrument; proximate to these, proteins of the presynaptic compartment accumulated, whereas nearest to the cathode of the instrument postsynaptic marker proteins were predominantly found. As a nonfocusing technique, zonal FFE does not possess a separation capacity comparable to ITP; however, due to a continuous separation mode, it is adapted to process higher sample amounts and can be used for large-scale separations. We applied zonal FFE to the same starting material as in ITP and were able to separate mitochondria from synaptic material of the preparation, thus offering a fast alternative to clean synaptosome preparations from residual mitochondrial contaminations.

推荐方法

Copyright ©2007 ANTPedia, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号