实验方法> 生物信息学技术> 数据库>Optimization of the Molecular Dynamics Method for Simulations of DNA and Ion Transport Through Biological Nanopores

Optimization of the Molecular Dynamics Method for Simulations of DNA and Ion Transport Through Biological Nanopores

关键词: optimization molecular来源: 互联网

Molecular dynamics (MD) simulations have become a standard method for the rational design and interpretation of experimental studies of DNA translocation through nanopores. The MD method, however, offers a multitude of algorithms, parameters, and other protocol choices that can affect the accuracy of the resulting data as well as computational efficiency. In this chapter, we examine the most popular choices offered by the MD method, seeking an optimal set of parameters that enable the most computationally efficient and accurate simulations of DNA and ion transport through biological nanopores. In particular, we examine the influence of short-range cutoff, integration timestep and force field parameters on the temperature and concentration dependence of bulk ion conductivity, ion pairing, ion solvation energy, DNA structure, DNA–ion interactions, and the ionic current through a nanopore.

推荐方法

Copyright ©2007 ANTPedia, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号