实验方法> 生物信息学技术> 数据库>Disulfide Conjugation of Peptides to Oligonucleotides and Their Analogs

Disulfide Conjugation of Peptides to Oligonucleotides and Their Analogs

关键词: disulfide conjugation peptides来源: 互联网

  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

 

Peptide conjugation of oligonucleotides and their analogs is being studied widely towards improving the delivery of oligonucleotides into cells. Amongst the many possible routes of conjugation, the disulfide linkage has proved to be the most popular. This reversible linkage may have advantages for cell delivery, since it is likely to be cleaved within cells, thus releasing the oligonucleotide cargo. It is straightforward to introduce thiol functionalities into both oligonucleotide and peptide components suitable for disulfide conjugation. However, severe difficulties have been encountered in carrying out conjugations between highly cationic peptides and negatively charged oligonucleotides because of aggregation and precipitation. Presented here are reliable protocols for disulfide conjugation that have been verified for both cationic and hydrophobic peptides as well as oligonucleotides containing deoxyribonucleosides, ribonucleosides, 2??O ?methylribonucleosides, locked nucleic acid (LNA) units, as well as phosphorothioate backbones. Also presented are reliable protocols for disulfide conjugation of peptide nucleic acids (PNAs) with peptides.

Keywords: conjugation; disulfide oligonucleotide; peptide; PNA

        GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Conjugation of Peptides with Oligonucleotide Analogs Containing Negatively Charged Phosphates
  • Alternate Protocol 1: Conjugation of C‐Terminal Cys‐Containing Peptides to Oligonucleotides via Activation of the Oligonucleotide
  • Basic Protocol 2: Conjugation of Peptides with Peptide Nucleic Acids
  • Support Protocol 1: Determination of Molecular Mass by MALDI‐TOF Mass Spectrometry
  • Support Protocol 2: Determination of Thiol Content by the Ellman's Test
  • Commentary
  • Literature Cited
  • Figures
  • Tables

        GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Materials

Basic Protocol 1: Conjugation of Peptides with Oligonucleotide Analogs Containing Negatively Charged Phosphates   Materials
  • Fmoc‐protected amino acid monomers (Novabiochem) including:
    • Fmoc‐Arg(Pbf)‐OH
    • Fmoc‐Asn(Tr)‐OH
    • Fmoc‐Cys(Tr)‐OH
    • Fmoc‐Gln(Tr)‐OH
    • Fmoc‐Glu(Ot Bu)‐OH
    • Fmoc‐His(Tr)‐OH
    • Fmoc‐Lys(Boc)‐OH
    • Fmoc‐Trp(Boc)‐OH
  • N ,N ‐Dimethylformamide (DMF, AnalaR‐grade, BDH Chemicals), freshly distilled
  • PyBop (Novabiochem)
  • N ,N ‐Diisopropylethylamine (DIPEA, 99+%, Applied Biosystems)
  • Piperidine (>99.5%, Romil)
  • NovaSyn TGR resin (for C‐terminal amide synthesis, Novabiochem)
  • PEG‐PS resin (for C‐terminal carboxylic acid synthesis, Applied Biosystems)
  • Boc‐Cys(Npys)‐OH (for N‐terminal cysteine; Bachem Bioscience)
  • Isopropanol
  • Trifluoroacetic acid (TFA, >99.9%, Romil)
  • Triisopropylsilane (TIS, >99%, Aldrich)
  • Diethyl ether, 4°C
  • Acetonitrile (MeCN, HPLC‐grade, Fisher Scientific)
  • Millipore water or double‐distilled deionized water
  • 1,2‐Ethanedithiol (EDT, >98%, Fluka)
  • Water (HPLC‐grade)
  • 1.0 M NH 4 HCO 3 solution (aq.)
  • 10 mg/mL 2‐aldrithiol (Aldrich) in DMF
  • Nucleoside phosphoramidites (as needed):
    • 2′‐Deoxyribonucleoside phosphoramidites (Glen Research)
    • 2′‐O ‐Me‐ribonucleoside phosphoramidites (Transgenomics)
    • Locked nucleic acid (LNA) phosphoramidites (Link Technologies)
  • Anhydrous acetonitrile
  • 3′‐(6‐Fluorescein)‐CPG (for 3′‐fluorescent oligonucleotides, Glen Research)
  • Thiol modifier C6‐S‐S (for 5′‐thiol modification, Glen Research)
  • 0.02 M iodine solution in 78:2:20 (v/v/v) THF/pyridine/water (Proligo)
  • 5‐Ethylthio‐1H ‐tetrazole (a 0.25 M solution in MeCN, Link Technologies)
  • 30% (v/v) aq. ammonia
  • Sodium perchlorate (AnalaR, BDH Chemicals)
  • 2.0 M Tris·Cl, pH 6.8
  • Formamide (p.a. ≥99.0%, Fluka)
  • Sterilized water
  • 2.0 M triethylammonium acetate, pH 7 (TEAA, Glen Research)
  • 1.0 M aqueous D/L‐dithiothreitol (DTT, ≥99%, Aldrich)
  • Triethylamine (TEA, ≥99.5%, Fluka)
  • Peptide synthesizer (e.g., APEX 396 or Pioneer peptide synthesizer)
  • Desiccator attached to vacuum
  • 15‐mL polyethylene syringe (IST empty reservoir, Kinesis)
  • 20‐µm polyethylene frit (Kinesis)
  • Speedvac concentrator
  • Benchtop centrifuge
  • 15‐ and 50‐mL centrifuge tubes (Falcon)
  • 0.22‐ (water) and 0.45‐µm (water and organic) filters (Millipore)
  • HPLC system, chemically inert, suitable for ion‐exchange chromatography, with:
    • PEEK tubing throughout
    • Injector, sample loop, and syringe (manual loading)
    • UV/Vis detector, variable wavelength 190 and 500 nm (preferable) or dual‐wavelength detection
    • Helium for degassing
    • Jupiter reversed‐phase HPLC column with guard (analytical and semi‐prep, Phenomenex)
    • DNAPac PA‐100 (9 × 250–mm) Dionex column (semi‐prep) with guard attached
    • Resource Q column (1 mL/min analytical or 6 mL/min semi‐prep, Amersham Biosciences)
  • Lyophilizer
  • Rotary evaporator and water pump
  • 1.5‐mL screw‐cap tube (Sarstedt) or vial
  • 55°C bath or temperature block (optional)
  • Spin‐X tube (Costar)
  • Dialysis tubing, 3500 MWCO (Medicell International Ltd.)
  • UV spectrometer
  • Sephadex NAP‐25 column (Amersham Biosciences)
  • 0.5‐mL microcentrifuge tube
  • Slide‐a‐lyzer (0.5‐ to 3‐mL capacity, 3500 MWCO, Pierce)
  • Additional reagents and equipment for peptide synthesis, MALDI‐TOF‐MS (see protocol 4 ), Ellman's test (see protocol 5 ), oligonucleotide synthesis ( appendix 3C ), and amino acid analysis (optional; see unit 4.22 )
NOTE: Amino acid protecting groups are t Bu, tert ‐butyl; Boc, tert ‐butyloxycarbonyl; Fmoc, 9‐fluorenylmethoxycarbonyl; Pbf, 2,2,4,6,7‐pentamethyldihydrobenzofuran‐5‐sulfonyl; pys, pyridylsulfenyl; Npys, 3‐nitropyridylsulfenyl; and Tr, trityl. Alternate Protocol 1: Conjugation of C‐Terminal Cys‐Containing Peptides to Oligonucleotides via Activation of the Oligonucleotide
  • Sephadex NAP‐10 column (Amersham Biosciences)
Basic Protocol 2: Conjugation of Peptides with Peptide Nucleic Acids   Materials
  • Fmoc (Bhoc) PNA monomers (Applied Biosystems)
  • N ‐Methylpyrrolidinone (NMP, ≥99.5%, Fluka)
  • PyBop (Novabiochem)
  • N ,N ‐Dimethylformamide (DMF, AnalaR‐grade, BDH Chemicals), freshly distilled
  • N ,N ‐Diisopropylethylamine (DIPEA, 99+%, Applied Biosystems)
  • 2,6‐Lutidine (≥99%, Aldrich)
  • Piperidine (>99.5%, Romil)
  • Fmoc‐PAL‐PEG‐PS amide resin (Applied Biosystems)
  • Isopropanol
  • Trifluoroacetic acid (TFA, >99.9%, Romil)
  • Triisopropylsilane (TIS, >99%, Aldrich)
  • Phenol
  • Diethyl ether, 4°C
  • 5% acetic anhydride/6% 2,6‐lutidine solution in DMF (PNA capping solution, Applied Biosystems)
  • 1.0 M aq. NH 4 OAc (AnalaR‐grade, BDH Chemicals)
  • APEX 396 Robotic peptide synthesizer
  • 1‐mL polyethylene syringe (IST empty reservoir, Kinesis)
  • 10‐µm polyethylene frit (Kinesis)
  • Plastic tap
  • Filtration unit
  • 15‐mL centrifuge tube (Falcon)
  • Heating jacket for HPLC column
  • UV spectrometer
  • Lyophilizer
  • Additional reagents and equipment for reversed‐phase HPLC (see protocol 1 )
Support Protocol 1: Determination of Molecular Mass by MALDI‐TOF Mass Spectrometry   Materials
  • α‐Cyano‐4‐hydroxycinnamic acid (CHCA, ≥99.0%, Aldrich)
  • Acetonitrile
  • 3% (v/v) aq. trifluoroacetic acid (TFA, >99.9%, Romil)
  • 2,6‐Dihydroxyacetophenone (DHAP, ≥99.0%, Fluka)
  • Methanol
  • Diammonium hydrogen citrate (≥99.0%, Fluka)
  • Millipore water or double‐distilled deionized water
  • 2,4,6‐Trihydroxyacetophenone (THAP, ≥99%, Fluka)
  • 1.5‐mL solvent‐resistant microcentrifuge tubes
  • MALDI‐TOF mass spectrometer
Support Protocol 2: Determination of Thiol Content by the Ellman's Test   Materials
  • Ellman's reagent: 2 mM dithio‐bis‐2‐nitrobenzoic acid (DTNB) in 50 mM sodium acetate (NaOAc)
  • 2.0 M Tris·Cl, pH 8.0
  • UV spectrometer with 1‐mL, 1‐cm path length quartz glass cuvette (Suprasil, Hellma)

GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Figures

  •   Figure 4.28.1 Formation of disulfide‐linked conjugates of peptides and antisense cargoes.
    View Image
  •   Figure 4.28.2 HPLC chromatogram of conjugate formation from peptide RQIKIWFQNRRMKWKKGGC with (pys)S‐(CH2 )6 ‐5′‐2′‐ O ‐Me/LNA [C UC CC A GGC UC A]‐3′‐fluorescein; peaks (i) salts and formamide, (ii) excess peptide, (iii) conjugate product, (iv) unconjugated oligo(pys). The solid trace is at 280 nm and the dashed trace is at 480 nm, which identifies the fluorescein label on the oligonucleotide.
    View Image
  •   Figure 4.28.3 MALDI‐TOF mass spectra of GRKKKRRQRRRPC(S‐)‐S‐(CH2 )6 ‐5′‐2′‐ O ‐Me/LNA[CUC CCA GGC UCA]‐3′‐fluorescein conjugate: (A ) purified and (B ) pure conjugate with 0.5 eq. peptide added.
    View Image
  •   Figure 4.28.4 RP‐HPLC of (A ) the synthesis of RRRRRRRQIKIWFQNRRMKWKKGGC‐CK[CTCCCAGGCTCAGATC]PNA KKK and (B ) analysis of the purified product.
    View Image
  •   Figure 4.28.5 MALDI‐TOF mass spectrum of the conjugate described in Figure .
    View Image

Videos

Literature Cited

Literature Cited
   Antopolsky, M., Azhayeva, E., Tengvall, U., Auriola, S., Jääskeläinen, I., Rönkkö, S., Honkakoski, P., Urtti, A., Lönnberg, H., and Azhayev, A. 1999. Peptide‐oligonucleotide phosphorothioate conjugates with membrane translocation and nuclear localization properties. Bioconjug. Chem. 10:598‐606.
   Astriab‐Fisher, A., Sergueev, D.S., Fisher, M., Shaw, B.R., and Juliano, R.
推荐方法

Copyright ©2007 ANTPedia, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号