实验方法> 生物信息学技术> 数据库>TRAF‐Mediated TNFR‐Family Signaling

TRAF‐Mediated TNFR‐Family Signaling

关键词: traf mediated tnfr family来源: 互联网

  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

The tumor necrosis factor (TNF) superfamily consists of a wide variety of cell?bound and secreted proteins that regulate numerous cellular processes. In particular, TNF?family proteins regulate the proliferation and death of tumor cells, as well as activated immune cells. This overview discusses the mammalian TNF receptor?associated factors (TRAFs), of which TRAF1, 2, 3, 5, and 6 have been shown to interact directly or indirectly with members of the TNF receptor superfamily. Structural features of TRAF proteins are described along with a discussion of TRAF?interacting proteins and the signaling pathways activated by the TRAF proteins. Finally, we examine the phenotypes observed in TRAF?knockout mice. Curr. Protoc. Immunol. 87:11.9D.1?11.9D.19. © 2009 by John Wiley & Sons, Inc.

Keywords: TNF family; TNFR family; IL?1R/TLR; TRAF proteins; signal transduction; inflammation

        GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Table of Contents

  • TNF and TNFR Superfamilies
  • Activated Receptors
  • TRAF Proteins
  • Structural Features of TRAF Proteins
  • TRAF‐Interacting Proteins
  • Signaling Pathways Activated by TRAF Proteins
  • TRAF Knockout Mice
  • Literature Cited
  • Figures
  • Tables

        GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Materials

 

GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Figures

  •   Figure 11.9.1 Domain organization of mammalian tumor‐necrosis factor receptor (TNFR)‐associated factors (TRAFs). The TRAF family consists of seven proteins. Each TRAF, except TRAF1, has a RING‐finger domain (RING) with an associated E3 ligase activity, and a zinc‐finger motif (Zn). The C‐terminal domain (TRAF‐C) is highly conserved among the TRAF proteins, except for TRAF7. This domain modulates homo‐ and heterodimerization of the TRAF proteins, as well as associations with various cell surface receptors. The coiled‐coil N‐terminal structure (TRAF‐N) is less conserved. Whereas TRAF1 and 3 do not activate any kinases, TRAF2, 5, and 6 serve as adaptors to link cell‐surface receptors to kinases. TRAF7 has seven WD40 domains instead of TRAF‐C. Using this motif, TRAF7 binds MEKK3, which phosphorylates the N‐terminal region of TRAF7.
    View Image
  •   Figure 11.9.2 Signaling pathways activated by TNF. Soluble TNF‐α acts primarily through TNFR1, whereas membrane‐bound TNF‐α functions via TNFR2. TRAF1/2 associates with TNFR2 directly, and with TNFR1 through TRADD and RIP.
    View Image
  •   Figure 11.9.3 TRAF6‐dependent signaling pathways. TNFR‐family members, such as TRANCE‐R and CD40, bind to TRAF6 and other TRAF proteins, activating various pathways including Src‐family kinases. IL‐1R and Toll‐like receptors are indirectly linked to TRAF6 through MyD88, Tollip, and IRAK.
    View Image

Videos

Literature Cited

Literature Cited
   Abell, A.N. and Johnson, G.L. 2005. MEKK4 is an effector of the embryonic TRAF4 for JNK activation. J. Biol. Chem. 280:35793‐35796.
   Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., Nakanishi, K., and Akira, S. 1998. Targeted disruption of the MyD88 gene results in loss of IL‐1‐ and IL‐18‐mediated function. Immunity 9:143‐150.
   Aggarwal, B.B. 2003. Signalling pathways of the TNF superfamily: A double‐edged sword. Nat. Rev. Immunol. 3:745‐756.
   Aizawa, S., Nakano, H., Ishida, T., Horie, R., Nagai, M., Ito, K., Yagita, H., Okumura, K., Inoue, J., and Watanabe, T. 1997. Tumor necrosis factor receptor‐associated factor (TRAF) 5 and TRAF2 are involved in CD30‐mediated NFkappaB activation. J. Biol. Chem. 272:2042‐2045.
   Anderson, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometsko, M.E., Roux, E.R., Teepe, M.C., DuBose, R.F., Cosman, D., and Galibert, L. 1997. A homologue of the TNF receptor and its ligand enhance T‐cell growth and dendritic‐cell function. Nature 390:175‐179.
   Arch, R.H., Gedrich, R.W., and Thompson, C.B. 1998. Tumor necrosis factor receptor‐associated factors (TRAFs)–a family of adapter proteins that regulates life and death. Genes Dev. 12:2821‐2830.
   Ashkenazi, A. and Dixit, V.M. 1998. Death receptors: Signaling and modulation. Science 281:1305‐1308.
   Baens, M., Chaffanet, M., Cassiman, J.J., van den Berghe, H., and Marynen, P. 1993. Construction and evaluation of a hncDNA library of human 12p transcribed sequences derived from a somatic cell hybrid. Genomics 16:214‐218.
   Baker, S.J. and Reddy, E.P. 1998. Modulation of life and death by the TNF receptor superfamily. Oncogene 17:3261‐3270.
   Banner, D.W., D'Arcy, A., Janes, W., Gentz, R., Schoenfeld, H.J., Broger, C., Loetscher, H., and Lesslauer, W. 1993. Crystal structure of the soluble human 55 kd TNF receptor‐human TNF beta complex: Implications for TNF receptor activation. Cell 73:431‐445.
   Baud, V. and Karin, M. 2001. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 11:372‐377.
   Baud, V., Liu, Z.G., Bennett, B., Suzuki, N., Xia, Y., and Karin, M. 1999. Signaling by proinflammatory cytokines: Oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino‐terminal effector domain. Genes Dev. 13:1297‐1308.
   Beutler, B. 2004. Inferences, questions and possibilities in Toll‐like receptor signalling. Nature 430:257‐263.
   Boone, D.L., Turer, E.E., Lee, E.G., Ahmad, R.C., Wheeler, M.T., Tsui, C., Hurley, P., Chien, M., Chai, S., Hitotsumatsu, O., McNally, E., Pickart, C., and Ma, A. 2004. The ubiquitin‐modifying enzyme A20 is required for termination of Toll‐like receptor responses. Nat. Immunol. 5:1052‐1060.
   Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A.M., Schirle, M., Schlegl, J., Schwab, M., Stein, M.A., Bauer, A., Casari, G., Drewes, G., Gavin, A.C., Jackson, D.B., Joberty, G., Neubauer, G., Rick, J., Kuster, B., and Superti‐Furga, G. 2004. A physical and functional map of the human TNF‐alpha/NF‐kappa B signal transduction pathway. Nat. Cell Biol. 6:97‐105.
   Brockhaus, M., Schoenfeld, H.J., Schlaeger, E.J., Hunziker, W., Lesslauer, W., and Loetscher, H. 1990. Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A. 87:3127‐3131.
   Brummelkamp, T.R., Nijman, S.M., Dirac, A.M., and Bernards, R. 2003. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF‐kappaB. Nature 424:797‐801.
   Burns, K., Clatworthy, J., Martin, L., Martinon, F., Plumpton, C., Maschera, B., Lewis, A., Ray, K., Tschopp, J., and Volpe, F. 2000. Tollip, a new component of the IL‐1RI pathway, links IRAK to the IL‐1 receptor. Nat. Cell Biol. 2:346‐351.
   Camerini, D., Walz, G., Loenen, W.A., Borst, J., and Seed, B. 1991. The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J. Immunol. 147:3165‐3169.
   Cao, Z., Henzel, W.J., and Gao, X. 1996a. IRAK: A kinase associated with the interleukin‐1 receptor. Science 271:1128‐1131.
   Cao, Z., Xiong, J., Takeuchi, M., Kurama, T., and Goeddel, D.V. 1996b. TRAF6 is a signal transducer for interleukin‐1. Nature 383:443‐446.
   Chan, F.K., Chun, H.J., Zheng, L., Siegel, R.M., Bui, K.L., and Lenardo, M.J. 2000. A domain in TNF receptors that mediates ligand‐independent receptor assembly and signaling. Science 288:2351‐2354.
   Chen, Z.J. 2005. Ubiquitin signalling in the NF‐kappaB pathway. Nat. Cell Biol. 7:758‐765.
   Cheng, G. and Baltimore, D. 1996. TANK, a co‐inducer with TRAF2 of TNF‐ and CD 40L‐mediated NF‐kappaB activation. Genes Dev. 10:963‐973.
   Cheng, G., Cleary, A.M., Ye, Z.S., Hong, D.I., Lederman, S., and Baltimore, D. 1995. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science 267:1494‐1498.
   Chinnaiyan, A.M., O'Rourke, K., Yu, G.L., Lyons, R.H., Garg, M., Duan, D.R., Xing, L., Gentz, R., Ni, J., and Dixit, V.M. 1996. Signal transduction by DR3, a death domain‐containing receptor related to TNFR‐1 and CD95. Science 274:990‐992.
   Choi, Y.H., Kim, K.B., Kim, H.H., Hong, G.S., Kwon, Y.K., Chung, C.W., Park, Y.M., Shen, Z.J., Kim, B.J., Lee, S.Y., and Jung, Y.K. 2001. FLASH coordinates NF‐kappa B activity via TRAF2. J. Biol. Chem. 276:25073‐25077.
   Chung, J.Y., Park, Y.C., Ye, H., and Wu, H. 2002. All TRAFs are not created equal: Common and distinct molecular mechanisms of TRAF‐mediated signal transduction. J. Cell. Sci. 115:679‐688.
   Croston, G.E., Cao, Z., and Goeddel, D.V. 1995. NF‐kappa B activation by interleukin‐1 (IL‐1) requires an IL‐1 receptor‐associated protein kinase activity. J. Biol. Chem. 270:16514‐16517.
   Dadgostar, H. and Cheng, G. 2000. Membrane localization of TRAF 3 enables JNK activation. J. Biol. Chem. 275:2539‐2544.
   Dadgostar, H., Doyle, S.E., Shahangian, A., Garcia, D.E., and Cheng, G. 2003. T3JAM, a novel protein that specifically interacts with TRAF3 and promotes the activation of JNK(1). FEBS Lett. 553:403‐407.
   Darnay, B.G., Haridas, V., Ni, J., Moore, P.A., and Aggarwal, B.B. 1998. Characterization of the intracellular domain of receptor activator of NF‐kappaB (RANK). Interaction with tumor necrosis factor receptor‐associated factors and activation of NF‐kappaB and c‐Jun N‐terminal kinase. J. Biol. Chem. 273:20551‐20555.
   Darnay, B.G., Ni, J., Moore, P.A., and Aggarwal, B.B. 1999. Activation of NF‐kappaB by RANK requires tumor necrosis factor receptor‐associated factor (TRAF) 6 and NF‐kappaB‐inducing kinase. Identification of a novel TRAF6 interaction motif. J. Biol. Chem. 274:7724‐7731.
   Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z.J. 2000. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin‐conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351‐361.
   Deng, Y., Ren, X., Yang, L., Lin, Y., and Wu, X. 2003. A JNK‐dependent pathway is required for TNFalpha‐induced apoptosis. Cell 115:61‐70.
   Dougall, W.C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K., De Smedt, T., Daro, E., Smith, J., Tometsko, M.E., Maliszewski, C.R., Armstrong, A., Shen, V., Bain, S., Cosman, D., Anderson, D., Morrissey, P.J., Peschon, J.J., and Schuh, J. 1999. RANK is essential for osteoclast and lymph node development. Genes Dev. 13:2412‐2424.
   Dunn, I.F., Sannikova, T.Y., Geha, R.S., and Tsitsikov, E.N. 2000. Identification and characterization of two CD40‐inducible enhancers in the mouse TRAF1 gene locus. Mol. Immunol. 37:961‐973.
   Durkop, H., Latza, U., Hummel, M., Eitelbach, F., Seed, B., and Stein, H. 1992. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin's disease. Cell 68:421‐427.
   Eby, M.T., Jasmin, A., Kumar, A., Sharma, K., and Chaudhary, P.M. 2000. TAJ, a novel member of the tumor necrosis factor receptor family, activates the c‐Jun N‐terminal kinase pathway and mediates caspase‐independent cell death. J. Biol. Chem. 275:15336‐15342.
   Esparza, E.M. and Arch, R.H. 2004. TRAF4 functions as an intermediate of GITR‐induced NF‐kappaB activation. Cell. Mol. Life Sci. 61:3087‐3092.
   Fata, J.E., Kong, Y.Y., Li, J., Sasaki, T., Irie‐Sasaki, J., Moorehead, R.A., Elliott, R., Scully, S., Voura, E.B., Lacey, D.L., Boyle, W.J., Khokha, R., and Penninger, J.M. 2000. The osteoclast differentiation factor osteoprotegerin‐ligand is essential for mammary gland development. Cell 103:41‐50.
   Feng, X., Gaeta, M.L., Madge, L.A., Yang, J.H., Bradley, J.R., and Pober, J.S. 2001. Caveolin‐1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. J. Biol. Chem. 276:8341‐8349.
   Fleckenstein, D.S., Dirks, W.G., Drexler, H.G., and Quentmeier, H. 2003. Tumor necrosis factor receptor‐associated factor (TRAF) 4 is a new binding partner for the p70S6 serine/threonine kinase. Leuk. Res. 27:687‐694.
   Fotin‐Mleczek, M., Henkler, F., Hausser, A., Glauner, H., Samel, D., Graness, A., Scheurich, P., Mauri, D., and Wajant, H. 2004. Tumor necrosis factor receptor‐associated factor (TRAF) 1 regulates CD40‐induced TRAF2‐mediated NF‐kappaB activation. J. Biol. Chem. 279:677‐685.
   Fuchs, P., Strehl, S., Dworzak, M., Himmler, A., and Ambros, P.F. 1992. Structure of the human TNF receptor 1 (p60) gene (TNFR1) and localization to chromosome 12p13. Genomics 13:219‐224.
   Gamper, C., van Eyndhoven, W.G., Schweiger, E., Mossbacher, M., Koo, B., and Lederman, S. 2000. TRAF‐3 interacts with p62 nucleoporin, a component of the nuclear pore central plug that binds classical NLS‐containing import complexes. Mol. Immunol. 37:73‐84.
   Gatot, J.S., Gioia, R., Chau, T.L., Patrascu, F., Warnier, M., Close, P., Chapelle, J.P., Muraille, E., Brown, K., Siebenlist, U., Piette, J., Dejardin, E., and Chariot, A. 2007. Lipopolysaccharide‐mediated interferon regulatory factor activation involves TBK1‐IKKepsilon‐dependent Lys(63)‐linked polyubiquitination and phosphorylation of TANK/I‐TRAF. J. Biol. Chem. 282:31131‐31146.
   Ghosh, S., May, M.J., and Kopp, E.B. 1998. NF‐kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225‐260.
   Gohda, J., Matsumura, T., and Inoue, J. 2004. Cutting edge: TNFR‐associated factor (TRAF) 6 is essential for MyD88‐dependent pathway but not toll/IL‐1 receptor domain‐containing adaptor‐inducing IFN‐beta (TRIF)‐dependent pathway in TLR signaling. J. Immunol. 173:2913‐2917.
   Grech, A., Quinn, R., Srinivasan, D., Badoux, X., and Brink, R. 2000. Complete structural characterisation of the mammalian and Drosophila TRAF genes: Implications for TRAF evolution and the role of RING finger splice variants. Mol. Immunol. 37:721‐734.
   Grell, M., Douni, E., Wajant, H., Lohden, M., Clauss, M., Maxeiner, B., Georgopoulos, S., Lesslauer, W., Kollias, G., Pfizenmaier, K., and Scheurich, P. 1995. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80‐kDa tumor necrosis factor receptor. Cell 83:793‐802.
   Gurney, A.L., Marsters, S.A., Huang, R.M., Pitti, R.M., Mark, D.T., Baldwin, D.T., Gray, A.M., Dowd, A.D., Brush, A.D., Heldens, A.D., Schow, A.D., Goddard, A.D., Wood, W.I., Baker, K.P., Godowski, P.J., and Ashkenazi, A. 1999. Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr. Biol. 9:215‐218.
   Ha, Y.J. and Lee, J.R. 2004. Role of TNF receptor‐associated factor 3 in the CD40 signaling by production of reactive oxygen species through association with p40phox, a cytosolic subunit of nicotinamide adenine dinucleotide phosphate oxidase. J. Immunol. 172:231‐239.
   Habelhah, H., Takahashi, S., Cho, S.G., Kadoya, T., Watanabe, T., and Ronai, Z. 2004. Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF‐kappaB. Embo J. 23:322‐332.
   Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.C., Wang, G.G., Kamps, M.P., Raz, E., Wagner, H., Hacker, G., Mann, M., and Karin, M. 2006. Specificity in Toll‐like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204‐207.
   Hammerschmidt, W. and Sugden, B. 1989. Genetic analysis of immortalizing functions of Epstein‐Barr virus in human B lymphocytes. Nature 340:393‐397.
   Hauer, J., Puschner, S., Ramakrishnan, P., Simon, U., Bongers, M., Federle, C., and Engelmann, H. 2005. TNF receptor (TNFR)‐associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5‐mediated activation of the noncanonical NF‐kappaB pathway by TRAF‐binding TNFRs. Proc. Natl. Acad. Sci. U.S.A. 102:2874‐2879.
   Henkler, F., Baumann, B., Fotin‐Mleczek, M., Weingartner, M., Schwenzer, R., Peters, N., Graness, A., Wirth, T., Scheurich, P., Schmid, J.A., and Wajant, H. 2003. Caspase‐mediated cleavage converts the tumor necrosis factor (TNF) receptor‐associated factor (TRAF)‐1 from a selective modulator of TNF receptor signaling to a general inhibitor of NF‐kappaB activation. J. Biol. Chem. 278:29216‐29230.
   Heyninck, K., De Valck, D., Vanden Berghe, W., Van Criekinge, W., Contreras, R., Fiers, W., Haegeman, G., and Beyaert, R. 1999. The zinc finger protein A20 inhibits TNF‐induced NF‐kappaB‐dependent gene expression by interfering with an RIP‐ or TRAF2‐mediated transactivation signal and directly binds to a novel NF‐kappaB‐inhibiting protein ABIN. J. Cell Biol. 145:1471‐1482.
   Hoeflich, K.P., Yeh, W.C., Yao, Z., Mak, T.W., and Woodgett, J.R. 1999. Mediation of TNF receptor‐associated factor effector functions by apoptosis signal‐regulating kinase‐1 (ASK1). Oncogene 18:5814‐5820.
   Hohmann, H.P., Remy, R., Brockhaus, M., and van Loon, A.P. 1989. Two different cell types have different major receptors for human tumor necrosis factor (TNF alpha). J. Biol. Chem. 264:14927‐14934.
   Hsu, H., Huang, J., Shu, H.B., Baichwal, V., and Goeddel, D.V. 1996a. TNF‐dependent recruitment of the protein kinase RIP to the TNF receptor‐1 signaling complex. Immunity 4:387‐396.
   Hsu, H., Shu, H.B., Pan, M.G., and Goeddel, D.V. 1996b. TRADD‐TRAF2 and TRADD‐FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299‐308.
  
推荐方法

Copyright ©2007 ANTPedia, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号