实验方法> 生物信息学技术> 数据库>Proteomics and the Analysis of Proteomic Data: 2013 Overview of Current Protein‐Profiling Technologies

Proteomics and the Analysis of Proteomic Data: 2013 Overview of Current Protein‐Profiling Technologies

关键词: proteomic data来源: 互联网

  • Abstract
  • Table of Contents
  • Literature Cited

Abstract

 

Mass spectrometry has become a major tool in the study of proteomes. The analysis of proteolytic peptides and their fragment ions by this technique enables the identification and quantitation of the precursor proteins in a mixture. However, deducing chemical structures and then protein sequences from mass?to?charge ratios is a challenging computational task. Software tools incorporating powerful algorithms and statistical methods improved our ability to process the large quantities of proteomics data. Repositories of spectral data make both data analysis and experimental design more efficient. New approaches in quantitative and statistical proteomics make possible a greater coverage of the proteome, the identification of more post?translational modifications, and a greater sensitivity in the quantitation of targeted proteins. Curr. Protoc. Bioinform. 41:13.21.1?13.21.17. © 2013 by John Wiley & Sons, Inc.

Keywords: shotgun proteomics; search engines; labeled quantitation; data repository; Selective Reaction Monitoring; data?independent analysis; data exchange format; quantitative proteomics

        GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Table of Contents

  • Introduction
  • Discovery Proteomics
  • Quantitative Proteomics
  • Conclusion
  • Acknowledgments
  • Literature Cited

        GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Materials

 

GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Figures

Videos

Literature Cited

Literature Cited
   Alves, G., Ogurtsov, A.Y., Kwok, S., Wu, W.W., Wang, G., Shen, R.F., and Yu, Y.K. 2008. Detection of co‐eluted peptides using database search methods. Biol. Direct 3:27.
   Amanchy, R., Periaswamy, B., Mathivanan, S., Reddy, R., Tattikota, S.G., and Pandey, A. 2007. A curated compendium of phosphorylation motifs. Nat. Biotechnol. 25:285‐286.
   Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., and Kuster, B. 2007. Quantitative mass spectrometry in proteomics: A critical review. Anal. Bioanal. Chem. 389:1017‐1031.
   Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J., and Gygi, S.P. 2006. A probability‐based approach for high‐throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24:1285‐1292.
   Beavis, R.C. 2006. Using the global proteome machine for protein identification. Methods Mol. Biol. 328:217‐228.
   Bern, M. and Goldberg, D. 2006. De novo analysis of peptide tandem mass spectra by spectral graph partitioning. J. Comput. Biol. 13:364‐378.
   Bjornson, R.D., Carriero, N.J., Colangelo, C., Shifman, M., Cheung, K.H., Miller, P.L., and Williams, K. 2008. X!!Tandem, an improved method for running X!tandem in parallel on collections of commodity computers. J. Proteome Res. 7:293‐299.
   Blom, N., Sicheritz‐Ponten, T., Gupta, R., Gammeltoft, S., and Brunak, S. 2004. Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633‐1649.
   Bodenmiller, B., Campbell, D., Gerrits, B., Lam, H., Jovanovic, M., Picotti, P., Schlapbach, R., and Aebersold, R. 2008. PhosphoPep‐a database of protein phosphorylation sites in model organisms. Nat. Biotechnol. 26:1339‐1340.
   Bruce, C., Shifman, M.A., Miller, P., and Gulcicek, E.E. 2006. Probabilistic enrichment of phosphopeptides by their mass defect. Anal. Chem. 78:4374‐4382.
   Brunner, E., Ahrens, C.H., Mohanty, S., Baetschmann, H., Loevenich, S., Potthast, F., Deutsch, E.W., Panse, C., de Lichtenberg, U., Rinner, O., Lee, H., Pedrioli, P.G., Malmstrom, J., Koehler, K., Schrimpf, S., Krijgsveld, J., Kregenow, F., Heck, A.J., Hafen, E., Schlapbach, R., and Aebersold, R. 2007. A high‐quality catalog of the Drosophila melanogaster proteome. Nat. Biotechnol. 25:576‐583.
   Chen, T., Kao, M.Y., Tepel, M., Rush, J., and Church, G.M. 2001. A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. J. Comput. Biol. 8:325‐337.
   Claassen, M. 2012. Inference and validation of protein identifications. Mol. Cell. Proteom. 11:1097‐1104.
   Claassen, M., Aebersold, R., and Buhmann, J.M. 2009. Proteome coverage prediction with infinite Markov models. Bioinformatics 25:I154‐I160.
   Claassen, M., Reiter, L., Hengartner, M.O., Buhmann, J.M., and Aebersold, R. 2012. Generic comparison of protein inference engines. Mol. Cell. Proteom. 11:O110.007088.
   Cox, J. and Mann, M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nat. Biotechnol. 26:1367‐1372.
   Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., and Mann, M. 2011. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10:1794‐1805.
   Craig, R. and Beavis, R.C. 2004. TANDEM: Matching proteins with tandem mass spectra. Bioinformatics 20:1466‐1467.
   Dancik, V., Addona, T.A., Clauser, K.R., Vath, J.E., and Pevzner, P.A. 1999. De novo peptide sequencing via tandem mass spectrometry. J. Comput. Biol. 6:327‐342.
   Deutsch, E.W. 2010. The PeptideAtlas project. Methods Mol. Biol. 604:285‐296.
   Deutsch, E.W., Chambers, M., Neumann, S., Levander, F., Binz, P.A., Shofstahl, J., Campbell, D.S., Mendoza, L., Ovelleiro, D., Helsens, K., Martens, L., Aebersold, R., Moritz, R.L., and Brusniak, M.Y. 2012. TraML‐a standard format for exchange of selected reaction monitoring transition lists. Mol. Cell. Proteom. 11:R111.015040.
   Dinkel, H., Chica, C., Via, A., Gould, C.M., Jensen, L.J., Gibson, T.J., and Diella, F. 2011. Phospho.ELM: A database of phosphorylation sites‐update 2011. Nucleic Acids Res. 39:D261‐D267.
   Domanski, D., Percy, A.J., Yang, J., Chambers, A.G., Hill, J.S., Freue, G.V., and Borchers, C.H. 2012. MRM‐based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma. Proteomics 12:1222‐1243.
   Dong, M.Q., Venable, J.D., Au, N., Xu, T., Park, S.K., Cociorva, D., Johnson, J.R., Dillin, A., and Yates, J.R. 3rd. 2007. Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317:660‐663.
   Dudoit, S., Shaffer, J.P., and Boldrick, J.C. 2003. Multiple hypothesis testing in microarray experiments. Stat. Sci. 18:71‐103.
   Eisenacher, M. 2011. mzIdentML: An open community‐built standard format for the results of proteomics spectrum identification algorithms. Methods Mol. Biol. 696:161‐177.
   Elias, J.E. and Gygi, S.P. 2010. Target‐decoy search strategy for mass spectrometry‐based proteomics. Methods Mol. Biol. 604:55‐71.
   Ellis, J.J. and Kobe, B. 2011. Predicting protein kinase specificity: Predikin update and performance in the DREAM4 challenge. PloS One 6:e21169.
   Eng, J., McCormack, A.L., and Yates, J.R. 1994a. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5:976‐989.
   Eng, J.K., McCormack, A.L., and Yates, J.R. 1994b. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5:976‐989.
   Eriksson, J. and Fenyo, D. 2007. Improving the success rate of proteome analysis by modeling protein‐abundance distributions and experimental designs. Nat. Biotechnol. 25:651‐655.
   Farrah, T., Deutsch, E.W., Omenn, G.S., Campbell, D.S., Sun, Z., Bletz, J.A., Mallick, P., Katz, J.E., Malmstrom, J., Ossola, R., Watts, J.D., Lin, B., Zhang, H., Moritz, R.L., and Aebersold, R. 2011. A high‐confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol. Cell. Proteom. 10:M110.006353.
   Field, H.I., Fenyo, D., and Beavis, R.C. 2002. RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database. Proteomics 2:36‐47.
   Fitzgibbon, M., Law, W., May, D., Detter, A., and McIntosh, M. 2008. Open‐source platform for the analysis of liquid chromatography‐mass spectrometry (LC‐MS) data. Methods Mol. Biol. 428:369‐382.
   Frank, A.M. 2009. Predicting intensity ranks of peptide fragment ions. J. Proteome Res. 8:2226‐2240.
   Gattiker, A., Gasteiger, E., and Bairoch, A. 2002. ScanProsite: A reference implementation of a PROSITE scanning tool. Appl. Bioinformatics 1:107‐108.
   Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Xu, M., Maynard, D.M., Yang, X., Shi, W., and Bryant, S.H. 2004. Open mass spectrometry search algorithm. J. Proteome Res. 3:958‐964.
   Gupta, N. and Pevzner, P.A. 2009. False discovery rates of protein identifications: A strike against the two‐peptide rule. J. Proteome Res. 8:4173‐4181.
   Hawkridge, A.M. and Muddiman, D.C. 2009. Mass spectrometry‐based biomarker discovery: Toward a global proteome index of individuality. Annu. Rev. Anal. Chem. 2:265‐277.
   Hosack, D.A., Dennis, G., Sherman, B.T., Lane, H.C., and Lempicki, R.A. 2003. Identifying biological themes within lists of genes with EASE. Genome Biol. 4:R70.
   Huang, D.W., Sherman, B.T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M.W., Lane, H.C., and Lempicki, R.A. 2007. DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35:W169‐W175.
   Hughes, C., Ma, B., and Lajoie, G.A. 2010. De novo sequencing methods in proteomics. Methods Mol. Biol. 604:105‐121.
   Jaffe, J.D., Mani, D.R., Leptos, K.C., Church, G.M., Gillette, M.A., and Carr, S.A. 2006. PEPPeR, a platform for experimental proteomic pattern recognition. Mol. Cell. Proteom. 5:1927‐1941.
   Jaffe, J.D., Keshishian, H., Chang, B., Addona, T.A., Gillette, M.A., and Carr, S.A. 2008. Accurate inclusion mass screening: A bridge from unbiased discovery to targeted assay development for biomarker verification. Mol. Cell. Proteom. 7:1952‐1962.
   Jain, N., Thatte, J., Braciale, T., Ley, K., O'Connell, M., and Lee, J.K. 2003. Local pooled error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 19:1945‐1951.
   Jain, N., Cho, H., O'Connell, M., and Lee, J.K. 2005. Rank‐invariant resampling based estimation of false discovery rate for analysis of small sample microarray data. BMC Bioinformatics 6:187.
   Jiang, X., Han, G., Feng, S., Ye, M., Yao, X., and Zou, H. 2008. Automatic validation of phosphopeptide identifications by the MS2/MS3 target‐decoy search strategy. J. Proteome Res. 7:1640‐1649.
   Jung, I., Matsuyama, A., Yoshida, M., and Kim, D. 2010. PostMod: Sequence based prediction of kinase‐specific phosphorylation sites with indirect relationship. BMC Bioinformatics 11:S10.
   Kall, L., Storey, J.D., MacCoss, M.J., and Noble, W.S. 2008. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J. Proteome Res. 7:29‐34.
   Kapp, E., Schutz, F., and Simpson, R. 2005. An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms; Sensitivity and specificity analysis. Mol. Cell. Proteom. 4:S24.
   Keller, A., Eng, J., Zhang, N., Li, X.J., and Aebersold, R. 2005. A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 1:2005.0017.
   Kim, J.H., Lee, J., Oh, B., Kimm, K., and Koh, I. 2004. Prediction of phosphorylation sites using SVMs. Bioinformatics 20:3179‐3184.
   Krokhin, O.V., Ying, S., Cortens, J.P., Ghosh, D., Spicer, V., Ens, W., Standing, K.G., Beavis, R.C., and Wilkins, J.A. 2006. Use of peptide retention time prediction for protein identification by off‐line reversed‐phase HPLC‐MALDI MS/MS. Anal. Chem. 78:6265‐6269.
   Lam, H., Deutsch, E.W., Eddes, J.S., Eng, J.K., King, N., Stein, S.E., and Aebersold, R. 2007. Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7:655‐667.
   Lange, V., Picotti, P., Domon, B., and Aebersold, R. 2008. Selected reaction monitoring for quantitative proteomics: A tutorial. Mol. Syst. Biol. 4:222.
   Leptos, K.C., Sarracino, D.A., Jaffe, J.D., Krastins, B., and Church, G.M. 2006. MapQuant: Open‐source software for large‐scale protein quantification. Proteomics 6:1770‐1782.
   Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M., and Yates, J.R. 3rd. 1999. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17:676‐682.
   Liu, H., Sadygov, R.G., and Yates, J.R. 3rd. 2004. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76:4193‐4201.
   Lu, B., Ruse, C., Xu, T., Park, S.K., and Yates, J. 3rd. 2007. Automatic validation of phosphopeptide identifications from tandem mass spectra. Anal. Chem. 79:1301‐1310.
   Lu, B., Ruse, C.I., and Yates, J.R. 3rd. 2008. Colander: A probability‐based support vector machine algorithm for automatic screening for CID spectra of phosphopeptides prior to database search. J. Proteome Res. 7:3628‐3634.
   Lundgren, D.H., Hwang, S.I., Wu, L., and Han, D.K. 2010. Role of spectral counting in quantitative proteomics. Exp. Rev. Proteom. 7:39‐53.
   MacLean, B., Tomazela, D.M., Shulman, N., Chambers, M., Finney, G.L., Frewen, B., Kern, R., Tabb, D.L., Liebler, D.C., and MacCoss, M.J. 2010. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966‐968.
   Mallick, P., Schirle, M., Chen, S.S., Flory, M.R., Lee, H., Martin, D., Raught, B., Schmitt, R., Werner, T., Kuster, B., and Aebersold, R. 2007. eComputational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol. 25:125‐131.
   Mann, M. and Kelleher, N.L. 2008. Precision proteomics: The case for high resolution and high mass accuracy. Proc. Natl. Acad. Sci. U.S.A. 105:18132‐18138.
   Mann, M. and Wilm, M. 1994. Error‐tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66:4390‐4399.
   Martin, D.B., Holzman, T., May, D., Peterson, A., Eastham, A., Eng, J., and McIntosh, M. 2008. MRMer, an interactive open source and cross‐platform system for data extraction and visualization of multiple reaction monitoring experiments. Mol. Cell. Proteom. 7:2270‐2278.
   Mead, J.A., Bianco, L., Ottone, V., Barton, C., Kay, R.G., Lilley, K.S., Bond, N.J., and Bessant, C. 2009. MRMaid, the Web‐based tool for designing multiple reaction monitoring (MRM) transitions. Mol. Cell. Proteom. 8:696‐705.
   Miller, M.L., Jensen, L.J., Diella, F., Jorgensen, C., Tinti, M., Li, L., Hsiung, M., Parker, S.A., Bordeaux, J., Sicheritz‐Ponten, T., Olhovsky, M., Pasculescu, A., Alexander, J., Knapp, S., Blom, N., Bork, P., Li, S., Cesareni, G., Pawson, T., Turk, B.E., Yaffe, M.B., Brunak, S., and Linding, R. 2008. Linear motif atlas for phosphorylation‐dependent signaling. Science Signal. 1:ra2.
   Molina, H., Yang, Y., Ruch, T., Kim, J. W., Mortensen, P., Otto, T., Nalli, A., Tang, Q. Q., Lane, M. D., Chaerkady, R., and Pandey, A. 2009. Temporal profiling of the adipocyte proteome during differentiation using a five‐plex SILAC based strategy. J. Proteome Res. 8:48‐58.
   Moore, R.E., Young, M.K., and Lee, T.D. 2002. Qscore: An algorithm for evaluating SEQUEST database search results. J. Am. Soc. Mass Spectrom. 13:378‐386.
   Moruz, L., Staes, A., Foster, J.M., Hatzou, M., Timmerman, E., Martens, L., and Kall, L. 2012. Chromatographic retention time prediction for posttranslationally modified peptides. Proteomics 12:1151‐1159.
   Mueller, L.N., Rinner, O., Schmidt, A., Letarte, S., Bodenmiller, B., Brusniak, M.Y., Vitek, O., Aebersold, R., and Muller, M. 2007. SuperHirn: A novel tool for high resolution LC‐MS‐based peptide/protein profiling. Proteomics 7:3470‐3480.
   Nesvizhskii, A.I. 2010. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteom. 73:2092‐2123.
   Nesvizhskii, A.I., Keller, A., Kolker, E., and Aebersold, R. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Analytical Chemistry 75:4646‐4658.
   Nesvizhskii, A.I., Vitek, O., and Aebersold, R. 2007. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods 4:787‐797.
   Palagi, P.M., Walther, D., Quadroni, M., Catherinet, S., Burgess, J., Zimmermann‐Ivol, C.G., Sanchez, J.C., Binz, P.A., Hochstrasser, D.F., and Appel, R.D. 2005. MSight: An image analysis software for liquid chromatography‐mass spectrometry. Proteomics 5:2381‐2384.
   Panchaud, A., Scherl, A., Shaffer, S.A., von Haller, P.D., Kulasekara, H.D., Miller, S.I., and Goodlett, D.R. 2009. Precursor acquisition independent from ion count: How to dive deeper into the proteomics ocean. Anal. Chem. 81:6481‐6488.
   Pappin, D.J., Hojrup, P., and Bleasby, A.J. 1993. Rapid identification of proteins by p
推荐方法

Copyright ©2007 ANTPedia, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号