实验方法> 生物信息学技术> 数据库>The STINT‐NMR Method for Studying In‐cell Protein‐Protein Interactions

The STINT‐NMR Method for Studying In‐cell Protein‐Protein Interactions

关键词: stint nmr method来源: 互联网

  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

This unit describes critical components and considerations required to study protein?protein structural interactions inside a living cell by using NMR spectroscopy (STINT?NMR). STINT?NMR entails sequentially expressing two (or more) proteins within a single bacterial cell in a time?controlled manner and monitoring their interactions using in?cell NMR spectroscopy. The resulting spectra provide a complete titration of the interaction and define structural details of the interacting surfaces at the level of single amino acid residues. The advantages and limitations of STINT?NMR are discussed, along with the differences between studying macromolecular interactions in vitro and in vivo (in?cell). Also described are considerations in the design of STINT?NMR experiments, focusing on selecting appropriate overexpression plasmid vectors, sample requirements and instrumentation, and the analysis of STINT?NMR data, with specific examples drawn from published works. Applications of STINT?NMR, including an in?cell methodology to post?translationally modify interactor proteins and an in?cell NMR assay for screening small molecule interactor libraries (SMILI?NMR) are presented. Curr. Protoc. Protein Sci. 61:17.11.1?17.11.15. © 2010 by John Wiley & Sons, Inc.

Keywords: in?cell biochemistry; in?cell NMR spectroscopy; protein?protein interactions; drug screening; proteomics

        GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Table of Contents

  • Introduction
  • Advantages and Limitations
  • Experimental Design
  • Sample Requirements and Handling
  • Data and Analysis
  • Applications
  • SMILI‐NMR
  • Literature Cited
  • Figures
  • Tables

        GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Materials

 

GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Figures

  •   Figure 17.11.1 Flow chart to generate a matrix of samples for STINT‐NMR analysis.Reprinted from Burz et al. ()
    View Image
  •   Figure 17.11.2 SDS‐PAGE of ubiquitin and STAM2 sequential expression. The BL21(DE3) cells were analyzed immediately after overexpression; lane 1 is uninduced cells; lanes 2 to 5 are a timecourse of ubiquitin overexpression induced using L ‐arabinose for 0.5, 1, 2, and 3 hr, respectively; lanes 6 to 9 are sequential overexpression of STAM2 induced using IPTG for 0.5, 1, 2, and 3 hr, respectively. Note that the ubiquitin level remains essentially constant as STAM2 expression increases. Reprinted from Burz et al. (). Abbreviations: ubq, ubiquitin
    View Image
  •   Figure 17.11.3 NMR spectra of the target protein, ubiquitin, complexed with interactor peptide, AUIM, and with interactor protein, STAM2. (A ) Overlay of 1 H{15 N}HSQC spectra of E. coli cells after 3 hr of overexpressing [ U ‐, 15 N] ubiquitin and 0 hr (black), 2 hr (red), and 3 hr (blue) of overexpressing AUIM. Individual peaks exhibiting large chemical shifts are labeled with corresponding assignments. The progression of colors in the 1 H{15 N}HSQC overlaid spectra was chosen for ease of viewing. Inset: Close‐up of the chemical shift changes of Gly47 during titration. (B ) 1 H{15 N}HSQC spectra of E. coli cells after 3 hr of overexpressing [ U ‐, 15 N] ubiquitin and 3 hr of overexpressing STAM2. Resonance peaks exhibiting extreme broadening are indicated by crosses. Insets: One‐dimensional traces of selected peaks exhibiting differential broadening after 3 hr of overexpressing [ U‐ , 15 N] ubiquitin and 0 hr (black), 2 hr (red), and 3 hr (green) of overexpressing STAM2. Reprinted from Burz et al. ()
    View Image
  •   Figure 17.11.4 Interaction surface maps of ubiquitin‐ligand complexes. Interaction surface of ubiquitin mapped onto the three‐dimensional structure of ubiquitin (PDB code 1D3Z). Individual residues exhibiting either a chemical shift change >0.05 ppm or differential broadening are indicated in red. All perturbed residues lie on the ubiquitin surface and, therefore, reflect changes in the interaction surface of the molecule rather than changes in tertiary or quaternary structure. (A ) Y371/4F‐STAM2‐Ubq interaction; (B ) phosphorylated Y371/4F‐STAM2‐Ubq interaction (YP‐Y371/4F‐STAM2). Ubiquitin ligands are indicated in each panel. This interaction map was used to prove that Y371/4F mutation leads to a loss of the dependence of STAM2‐ubiquitin interaction on the phosphorylation state of STAM2. Reprinted from Burz and Shekhtman ()
    View Image
  •   Figure 17.11.5 Matrix method of screening chemical libraries. A library containing 289 dipeptide compounds is screened by examining individual mixtures located in the first row and first column of a matrix plate. Mixtures that result in similar changes in the in‐cell NMR spectrum, so called hits, located at the intersection of rows (red) and columns (blue), are used in the second round of screening to validate the hit. Reprinted with permission from Xie et al ()
    View Image

Videos

Literature Cited

Literature Cited
   Bader, G.D., Betel, D., and Hogue, C.W. 2003. BIND: The Biomolecular Interaction Network Database. Nucleic Acids Res. 31:248‐250.
   Burz, D.S. and Shekhtman, A. 2008. In‐cell biochemistry using NMR spectroscopy. PLoS ONE 3:e2571.
   Burz, D.S., and Shekhtman, A. 2009. Structural biology: Inside the living cell. Nature 458:37‐38.
   Burz, D.S., Dutta, K., Cowburn, D., and Shekhtman, A. 2006a. In‐cell NMR for protein‐protein interactions (STINT‐NMR). Nat. Protoc. 1:146‐152.
   Burz, D.S., Dutta, K., Cowburn, D., and Shekhtman, A. 2006b. Mapping structural interactions using in‐cell NMR spectroscopy (STINT‐NMR). Nat. Methods 3:91‐93.
   Clague, M.J. and Urbe, S. 2001. The interface of receptor trafficking and signalling. J. Cell Sci. 114:3075‐3081.
   Cruzeiro‐Silva, C., Albernaz, F.P., Valente, A.P., and Almeida, F.C. 2006. In‐Cell NMR spectroscopy: Inhibition of autologous protein expression reduces Escherichia coli lysis. Cell Biochem. Biophys. 44:497‐502.
   Fernandes, P.B. 1998. Technological advances in high‐throughput screening. Curr. Opin. Chem. Biol. 2:597‐603.
   Gardner, K.H. and Kay, L.E. 1998. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu. Rev. Biophys. Biomol. Struct. 27:357‐406.
   Gerstein, M. 2000. Integrative database analysis in structural genomics. Nat. Struct. Biol. 7:960‐963.
   Giepmans, B.N., Adams, S.R., Ellisman, M.H., and Tsien, R.Y. 2006. The fluorescent toolbox for assessing protein location and function. Science 312:217‐224.
   Groll, M., Bochtler, M., Brandstetter, H., Clausen, T., and Huber, R. 2005. Molecular machines for protein degradation. Chembiochem 6:222‐256.
   Haglund, K., Di Fiore, P.P., and Dikic, I. 2003. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28:598‐603.
   Hajduk, P.J. and Burns, D.J. 2002. Integration of NMR and high‐throughput screening. Comb. Chem. High Throughput Screen. 5:613‐621.
   Heitman, J., Movva, N.R., and Hall, M.N. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905‐909.
   Inomata, K., Ohno, A., Tochio, H., Isogai, S., Tenno, T., Nakase, I., Takeuchi, T., Futaki, S., Ito, Y., Hiroaki, H., and Shirakawa, M. 2009. High‐resolution multi‐dimensional NMR spectroscopy of proteins in human cells. Nature 458:106‐109.
   Jansen, R., Greenbaum, D., and Gerstein, M. 2002. Relating whole‐genome expression data with protein‐protein interactions. Genome Res. 12:37‐46.
   Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A.P., Punna, T., Peregrín‐Alvarez, J.M., Shales, M., Zhang, X., Davey, M., Robinson, M.D., Paccanaro, A., Bray, J.E., Sheung, A., Beattie, B., Richards, D.P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M.M., Vlasblom, J., Wu, S., Orsi, C., Collins, S.R., Chandran, S., Haw, R., Rilstone, J.J., Gandi, K., Thompson, N.J., Musso, G., St Onge, P., Ghanny, S., Lam, M.H., Butland, G., Altaf‐Ul, A.M., Kanaya, S., Shilatifard, A., O'Shea, E., Weissman, J.S., Ingles, C.J., Hughes, T.R., Parkinson, J., Gerstein, M., Wodak, S.J., Emili, A., and Greenblatt, J.F. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637‐643.
   Li, C., Charlton, L.M., Lakkavaram, A., Seagle, C., Wang, G., Young, G.B., Macdonald, J.M., and Pielak, G.J. 2008. Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: implications for in‐cell NMR spectroscopy. J. Am. Chem. Soc. 130:6310‐6311.
   Marmor, M.D. and Yarden, Y. 2004. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23:2057‐2070.
   Pellecchia, M., Sem, D.S., and Wuthrich, K. 2002. NMR in drug discovery. Nat. Rev. Drug Discov. 1:211‐219.
   Pellecchia, M., Bertini, I., Cowburn, D., Dalvit, C., Giralt, E., Jahnke, W., James, T.L., Homans, S.W., Kessler, H., Luchinat, C., Meyer, B., Oschkinat, H., Peng, J., Schwalbe, H., and Siegal, G. 2008. Perspectives on NMR in drug discovery: A technique comes of age. Nat. Rev. Drug Discov. 7:738‐745.
   Peng, J.W., Lepre, C.A., Fejzo, J., Abdul‐Manan, N., and Moore, J.M. 2001. Nuclear magnetic resonance‐based approaches for lead generation in drug discovery. Methods Enzymol. 338:202‐230.
   Piotto, M., Saudek, V., and Sklenar, V. 1992. Gradient‐tailored excitation for single‐quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2:661‐665.
   Rain, J.C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A., and Legrain, P. 2001. The protein‐protein interaction map of Helicobacter pylori. Nature 409:211‐215.
   Sakakibara, D., Sasaki, A., Ikeya, T., Hamatsu, J., Hanashima, T., Mishima, M., Yoshimasu, M., Hayashi, N., Mikawa, T., Walchli, M., Smith, B.O., Shirakawa, M., Guntert, P., and Ito, Y. 2009. Protein structure determination in living cells by in‐cell NMR spectroscopy. Nature 458:102‐105.
   Sali, A., Glaeser, R., Earnest, T., and Baumeister, W. 2003. From words to literature in structural proteomics. Nature 422:216‐225.
   Schuffenhauer, A., Ruedisser, S., Marzinzik, A.L., Jahnke, W., Blommers, M., Selzer, P., and Jacoby, E. 2005. Library design for fragment based screening. Curr. Top. Med. Chem. 5:751‐762.
   Seet, B.T., Dikic, I., Zhou, M.M., and Pawson, T. 2006. Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 7:473‐483.
   Selenko, P., Serber, Z., Gadea, B., Ruderman, J., and Wagner, G. 2006. Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc. Natl. Acad. Sci. U.S.A. 103:11904‐11909.
   Serber, Z. and Dotsch, V. 2001. In‐cell NMR spectroscopy. Biochemistry 40:14317‐14323.
   Shuker, S.B., Hajduk, P.J., Meadows, R.P., and Fesik, S.W. 1996. Discovering high‐affinity ligands for proteins: SAR by NMR. Science 274:1531‐1534.
   Silverman, L., Campbell, R., and Broach, J.R. 1998. New assay technologies for high‐throughput screening. Curr. Opin. Chem. Biol. 2:397‐403.
   Slade, K.M., Baker, R., Chua, M., Thompson, N.L., and Pielak, G.J. 2009. Effects of recombinant protein expression on green fluorescent protein diffusion in Escherichia coli. Biochemistry 48:5083‐5089.
   Tugarinov, V., Hwang, P.M., and Kay, L.E. 2004. Nuclear magnetic resonance spectroscopy of high‐molecular‐weight proteins. Annu. Rev. Biochem. 73:107‐146.
   Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi‐Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G. Yang, M., Johnston, M., Fields, S., and Rothberg, J.M. 2000. A comprehensive analysis of protein‐protein interactions in Saccharomyces cerevisiae. Nature 403:623‐627.
   Xie, J., Reverdatto, S., Frolov, A., Hoffmann, R., Burz, D.S., and Shekhtman, A. 2008. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J. Biol. Chem. 283:27255‐27269.
   Xie, J., Thapa, R., Reverdatto, S., Burz, D.S., and Shekhtman, A. 2009. Screening of small molecule interactor library by using in‐cell NMR spectroscopy (SMILI‐NMR). J. Med. Chem. 52:3516‐3522.
   Zhu, Z., Pilpel, Y., and Church, G.M. 2002. Computational identification of transcription factor binding sites via a transcription‐factor‐centric clustering (TFCC) algorithm. J. Mol. Biol. 318:71‐81.
   Zuiderweg, E.R. 2002. Mapping protein‐protein interactions in solution by NMR spectroscopy. Biochemistry 41:1‐7.

GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library  

推荐方法

Copyright ©2007 ANTPedia, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号