关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

种植体周围炎净化处理对牙种植体钛合金表面粗...(五)

2020.5.18

E)光动力学疗法处理

表2A–E:Ti合金样品表面局部区域组成的EDS分析数据,其中Kα为X射线测量值,σ为%wt浓度数据的标准偏差:A)对照样品;B)碳酸氢盐喷射抛光样品;C)四环素处理样品;D)超声处理样品;E)光动力学疗法处理样品。

粗糙度结果

粗糙度分析侧重于以CM获得的Ti合金样品数据,CM可测定三个重要的3D粗糙度参数值: Sa、Sq及Sdar。这些数据示于下文表3。

对照

超声波

光动力学

碳酸氢盐

四环素

Sa(µm)

  1.86

0.79

  1.86

  1.82

  1.53

Sq(µm)

  2.42

1.13

  2.44

  2.34

  1.99

Sdar(%)

20.51

5.03

23.10

20.46

15.99

表3:以共聚焦显微镜获得的Ti合金样品表面粗糙度数据。分析侧重于3个粗糙度值:Sa(高度算术平均值);Sq(高度均方根[rms]);Sdar(展开面积/投影面积)。

首先,光动力学疗法处理、四环素处理和碳酸氢盐喷射抛光样品的Sa和Sq粗糙度值与对照样品的几乎相同。其次,超声处理样品的Sa和Sq粗糙度值比对照样品的小30%~50%。Sdar粗糙度值显示类似的趋势,不过喷射抛光和四环素处理样品的Sdar值明显小于对照样品(参见以下图5)。

20161214154238336.jpg

图5:表3中Ti合金种植体样品表面粗糙度数据Sa(蓝色)、Sq(红色)和Sdar(绿色)的曲线图,数据从CM 3D形貌图像获取。曲线图显示每种样品表面粗糙度值的变化程度。

 

对拍摄于对照样品(未改性)两处不同区域的AFM图像进行初步分析,结果表明,如果表面非常粗糙,其不同小区域的粗糙度值可能差异较大,因此AFM并非用于大面积测量的实用技术,而本研究的这类样品需要这种测量。

粗糙度值

对照样品区域1

对照样品区域2

Sa(µm)

  0.18

  0.14

Sq(µm)

  0.170

  0.125

Sdar(%)

36.80

40.10

表4:以原子力显微镜获取的Ti合金种植体对照样品区域2表面粗糙度数据。分析侧重于3个粗糙度值:Sa(高度算术平均值);Sq(高度均方根[rms]);Sdar(展开面积/投影面积)。

如上文表4所示,两个区域的Sdar值相差约10%,Sq值相差约35%,Sa值相差约30%。另一方面,AFM图像显示z范围差值超过1µm的峰和山,这对于AFM分析而言属于大差异,会导致图像中存在伪影,即可能由于顶端扫描样品时碰触表面而产生的“条纹”。总而言之,AFM图像结果取决于样品形貌和力学性能、反馈回路增益、扫描速率等。

总结和结论

目前临床上使用的Ti合金牙种植体具有各种各样的表面特性(包括结构特征和化学性质)。上述表面改性保留种植体的关键物理性质,只涉及其最外层表面,最终目标为实现所需的生物反应。以上介绍了不同物理化学、物理和化学表面改性方法的优劣。这些方法将帮助我们更好地了解种植体材料表面改性如何影响骨-种植体界面,以及如何在成功治疗种植体周围炎(种植体周围牙质组织感染)后的愈合过程中影响种植体骨整合优化方法的制定。目前尚未完全清楚表面粗糙度和化学性质对骨整合的影响程度。具有最佳临床效果的理想粗糙度仍是个未知数[20–23]

对于用四环素和光动力学疗法改性的样品,其形态受到钛合金析出的金属间颗粒化学侵蚀的影响。对于用喷射抛光和超声处理改性的样品,机理主要与力学相关。喷射抛光和光动力学疗法处理样品的表面粗糙度与对照样品相似(基于Sa、Sq和Sdar值)。超声和四环素处理样品的表面粗糙度低于对照样品。事实上,超声处理可使表面明显变得平坦。

碳酸氢盐喷射抛光样品的污染程度最大(盐残留),其次为四环素和光动力学疗法处理样品,超声处理样品污染最少。由于接触到盐(碳酸氢盐)或化合物(四环素或甲苯胺蓝),喷射抛光、四环素及光动力学疗法处理的Ti合金样品污染程度最大,这是显而易见的。超声处理的样品与对照样品一样洁净,或比对照样品洁净,不过也存在少量的铁(Fe),这些铁可能来自超声处理所用的钢探头。

可以通过合理使用这些牙科处理方法,最大可能提高种植体周围炎愈合过程Ti合金种植体与骨结合的概率。也许可以先使用光动力学疗法或碳酸氢盐喷射抛光(频率较低,比如20kHz,功率亦较低)维持种植体的表面粗糙度,然后施以短暂轻微的超声处理,或可有效净化表面。

参考文献

  1. Anil S, Anand PS, Alghamdi H and Jansen JA: Dental Implant Surface Enhancement and Osseointegration. Implant Dentistry – A Rapidly Evolving Practice (ed. Turkyilmaz I). InTech, August 2011, ISBN 978-953-307-658-4).

  2. Le Guéhennec L, Soueidan A, Layrolle P and Amouriq Y: Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials 23 (7): 844–54 (2007).

  3. Wennerberg A and Albrektsson T: Effects of titanium surface topography on bone integration: a systematic review. Clinical Oral Implants Research 20: 172–84 (2009).

  4. Zablotsky MH, Diedrich DL and Meffert RM: Detoxification of endotoxin-contaminated titanium and hydroxyapatite-coated surfaces utilizing various chemotherapeutic and mechanical modalities. Implant Dentistry 1: 154–58 (1992).

  5. Berglundh T, Gotfredsen K, Zitzmann NU, Lang NP and Lindhe J: Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: an experimental study in dogs. Clinical Oral Implants Research 18: 655–61 (2007).

  6. Omar O, Lenneras M, Svensson S, Suska F, Emanuelsson L, Hall J, Nannmark U and Thomsen P: Integrin and chemokine receptor gene expression in implant-adherent cells during early osseointegration. Journal of Material Science: Materials in Medicine 21: 969–80 (2010).

  7. Turzo K: Surface Aspects of Titanium Dental Implants. Book chapter: Molecular Studies and Novel Applications for Improved Quality of Human Life (ed.: Sammour RH). InTech, February 2012, ISBN 978-953-51-0151-2.

  8. Albrektsson T, Branemark PI, Hansson HA and Lindstrom JO: Osseointegrated titanium implants: Requirements for ensuring along-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica Scandinavica 52: 155–70 (1981).

  9. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH and Stich H: Influence of surface characteristics on bone integration of titanium implants: A histomorphometric study in miniature pigs. Journal of Biomedical Materials Research 25: 889–902 (1991).

  10. Wennerberg A, Albrektsson T and Lausmaa J: Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-microns-sized particles of Al2O3. Journal of Biomedical Materials Research 30: 251–60 (1996).

  11. Han CH, Johansson CB, Wennerberg A and Albrektsson T: Quantitative and qualitative investigations of surface enlarged titanium and titanium alloy implants, Clinical Oral Implants Research 9: 1–10 (1998).

  12. Cooper LF: A role for surface topography in creating and maintaining bone at titanium endosseous implants. Journal of Prosthetic Dentistry 84: 522–34 (2000).

  13. Belém Novaes jr. A, Scombatti de Souza SSL, de Barros RRM, Pereira KKY, Iezzi G and Piatelli A: Influence of Implant Surfaces on Osseointegration. Brazilian Dental Journal 21 (6): 471–81 (2010).

  14. Albrektsson T and Wennerberg A: Oral implant surfaces: Part 1 – Review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. International Journal of Prosthodontics 17: 536–43 (2004).

  15. Teughels W, van Assche N, Sliepen I and Quirynen M: Effect of material characteristics and or surface topography on biofilm development. Clinical Oral Implants Research 17 (2): 68–81 (2006).

  16. Groessner-Schreiber B, Hannig M, Dück A, Griepentrog M and Wenderoth DF: Do different implant surfaces exposed in the oral cavity of humans show different biofilm compositions and activities? European Journal of Oral Sciences 112 (6): 516–22 (2004).

  17. Groessner-Schreiber B, Teichmann J, Hannig M, Dorfer C, Wenderoth DF and Ott S: Modified implant surfaces show different biofilm compositions under in vivo conditions. Clinical Oral Implants Research 20: 817–26 (2009).

  18. Wennerberg A: On surface roughness and implant incorporation. Thesis, University of Gothenburg, Sweden (1996).

  19. Wennerberg A, Albrektsson T, Ulrich H and Krol JJ: An optical three-dimensional technique for topographical descriptions of surgical implants. Journal of Biomedical Engineering 14 (5): 412–18 (1992).

  20. Giavaresi G, Fini M, Cigada A, Chiesa R, Rondello G, Rimondini L, Torricelli P, Nicoli Aldini N and Giardino R: Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials 24 (9): 1583–94 (2003).

  21. Rønold HJ, Lyngstadaas SP and Ellingsen JE: Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials 24 (25): 4559–64 (2003).

  22. Grizon F, Aguado E, Huré G, Baslé MF and Chappard D: Enhanced bone integration of implants with increased surface roughness: a long term study in the sheep. Journal of Dentistry 30 (5–6): 195–203 (2002).

  23. Giavaresi G, Ambrosio L, Battiston GA, Casellato U, Gerbasi R, Finia M, Nicoli Aldini N, Martini L, Rimondini L and Giardino R: Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: an in vivo study. Biomaterials 25 (25): 5583–91 (2004).


推荐
关闭