关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

Nb掺杂调控CoSeS多级纳米结构用于增强析氢反应

2021.3.22

  Hierarchical CoSeS nanostructures assisted by Nb doping for enhanced hydrogen evolution reaction

  Nb掺杂调控CoSeS多级纳米结构用于增强析氢反应

  周亚楠, 朱宇冉, 闫新彤, 曹羽宁, 李佳, 董斌*, 杨敏, 李庆忠, 刘晨光, 柴永明*

  电催化析氢(HER)是清洁制氢的一种有效途径,

  对于氢经济和氢能产业的发展具有重要意义.

  金属掺杂是提高电催化剂本征活性的有效方法,

  导电基底的采用也有利于电荷传输和催化性能的整体提高.

  尽管已有关于硒化物作为HER催化剂的相关报道,

  但是合成条件有限、导电性、本征活性的影响,

  其电催化性能仍有提升的空间.

  此外,

  在酸性电解液中的腐蚀和氧化极大限制了催化剂性能的发挥.

  基于此,

  本文以氮掺杂碳球为载体,

  采用金属Nb掺杂、非金属硫硒化物协同以及表面碳包覆的三重策略,

  将掺杂元素Nb和活性位中心元素Co封装到氮掺杂碳纳米球内并进行连续的硫硒化反应,

  成功构筑多级纳米结构(Nb-CoSeS@NC)以提高其电催化析氢性能.

  碳球可为活性位的生长和分散提供足够的空间,

  同时有效防止活性金属的腐蚀和分解,

  并阻止金属纳米颗粒的团聚.

  硫化过程实现了非金属硫元素的掺杂,

  对于提高硒化物的催化活性和导电性都有重要作用.

  通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱、X射线光电子能谱(XPS)及电催化性能测试,

  详细研究了Nb-CoSeS@NC独特的纳米结构和电催化制氢性能,

  并分析了构效关系.

  XRD结果发现,

  引入Nb后Co9Se8和CoSe的特征峰移向更高的角度,

  表明其晶格体积的减小,

  有助于电荷传输.

  同时,

  氮掺杂碳球(NC)在26°可以观察到无定型碳的峰,

  而石墨碳的D带和G带强度比约为1.05,

  均表明NC中缺陷的存在,

  这可以进一步提高碳材料的导电性.

  SEM和TEM表征显示,

  催化剂为直径120

  nm的均匀的纳米核壳结构,

  壳层约为30

  nm,

  无明显的团聚和破碎,

  这是催化剂具有高稳定性的重要原因.

  表面的褶皱保证了大的活性比表面积,

  可以大大增加活性位点的数量.

  同时,

  催化剂与NC之间的紧密结合可以降低电子传输的阻抗进而改善其稳定性和析氢性能.

  分析高分辨率的TEM结果发现,

  Nb掺杂后,

  Nb-CoSeS@NC中Co9Se8的(222)晶面由0.301

  nm减小至0.184

  nm,

  与XRD结果相符.

  XPS表征揭示了引入Nb之后的电子效应.

  与CoSeS@NC相比,

  Nb的掺杂使Co 2p向更低的结合能移动,

  而Se 3d则移向高结合能移动,

  这是由于Nb导致了更强的电子相互作用.

  在0.5

  M的H2SO4中测试催化剂的析氢性能,

  Nb-CoSeS@NC仅需115

  mV的过电位便可以实现10

  mA cm-2的电流密度,

  Tafel斜率为43

  mV dec-1,

  优于CoSeS@NC等其他对比样品,

  且优于大多数掺杂型硒化物电催化剂.

  经过12

  h稳定性测试,

  电流密度未见明显降低,

  表明该多级结构催化剂的优异稳定性.

  Nb-CoSeS@NC提高活性可归因为Nb的掺杂增强了催化剂的电子相互作用,

  有助于提高的其本征导电性.

  Nb、Co正离子可以形成氢化物-受体中心,

  可能会削弱S-H键和Se-H键,

  并促进H-H键的形成,

  因此,

  多元掺杂产生的协同效应可以有效促进HER过程.

  此外,

  坚固的氮掺杂纳米碳壳为活性位点的分散提供了足够的空间和优异的电荷传输性能,

  同时降低了金属活性位腐蚀的可能性.


推荐
关闭