关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

发射光谱的概念和区分

2023.1.28

发射光谱可以区分为三种不同类别的光谱:线状光谱、带状光谱和连续光谱。线状光谱主要产生于原子,带状光谱主要产生于分子,连续光谱则主要产生于白炽的固体或气体放电。

现代观测到的原子发射的光谱线已有百万条了。每种原子都有其独特的光谱,犹如人的指纹一样是各不相同的。根据光谱学的理论,每种原子都有其自身的一系列分立的能态,每一能态都有一定的能量。以氢原子为例,能量的大小可表示为(3)

光谱学光谱学

式中n取从1到的正整数,称为主量子数,从经典的观点来说,n是描写电子围绕原子核运动的轨道的大小的。每一个 n值也就决定了一个能级。RH为氢原子的里德伯常数。h为普朗克常数。公式中的负号是因为习惯上把相应于n=的能量定为最高值并令它等于零,而相应于n=1的能量则定为最低能量,这个能态称为基态,相应的能级称为基能级。当原子以某种方法从基态被提升到较高的能态上时,原子的内部能量增加了,原子就会把这种多余的能量以光的形式发射出来,于是产生了原子的发射光谱。原子发射出来的光的频率v为 ,(4)

光谱学

光谱学光谱学

光谱学光谱学

式中Wh为较高能级的能量,Wi为较低能级的能量。频率经常以厘米倒数(cm-1)来量度;1厘米倒数是在1cm长度内所包括的波长数目。在细致地描写原子中的电子运动时,除了主量子数n以外,还有另外三个量子数,分别以lms表示。l是描写电子轨道运动角动量的大小的,称为角量子数,它的值取(n-1)到0之间的正整数。l=0的电子称为s电子,l=1的电子为p电子,l=2的电子为d电子等。量子数m是描写电子的运动轨道在空间的取向的,称为磁量子数,它的值不能大于l但可以为负。对于给定l来说,m=ll-1,…,-ls为电子自旋量子数,是描写电子自旋的角动量的,等。它产生出光谱中的多重线。如果原子中产生光谱的电子不只一个时,各个电子的自旋的矢量和S为电子组态的总自旋。量子数S永远是正数。对于轨道角动量也是如此,它们的和给出原子的总轨道角动量(量子数为L)。L=0时,有关的能态称为S态;L=1时,称为P态;L=2时,称为D态等。多电子原子能级的高低依赖于S,依赖于L,也依赖于SL之间的相互作用。SL结合在一起给出原子的总角动量J。量子数J取正值,其范围在LS之差的最小值和L+S的最大值之间。在光谱学中,常常以符号MLJ来表示原子的能级或者光谱项。其中M=2S+1为光谱的多重性,是表示能级分裂的数目的。例,则M=2,这意味着每个能级(S能级除外)都分裂成两个成分,碱金属原子能级就属于这种情况。对于两个电子的原子而言,S=0或1,这取决于两电子的自旋方向是平行的还是反平行,因之能级的多重性或者为1(能级无分裂)或者为3(每一能级分裂成三个成分)。碱土金属原子的能级就属于这种情况。依次类推。原子在各能级之间的跃迁就产生出光谱线来,从高能级向低能级的跃迁产生发射光谱;反之,产生吸收光谱。根据量子力学的法则,原子在能级之间的跃迁是遵守选择定则的,这些选择定则为 ΔL=0,±1;ΔS=0;ΔJ=0(除了J=0),±1。符号ΔL表示跃迁中的初态与终态的L值之差。ΔS和ΔJ的意义同此。

在分子的发射光谱中,研究的主要内容是二原子分子的发射光谱在分子中,电子围绕着两个或多个原子核运动,像原子一样,每种运动都有其特定的能级。除了电子运动之外,原子核围绕其中心彼此作周期振动;此外,这些原子核作为整体也会围绕某些轴在空间转动。所有这些运动都会显示在分子光谱中,因而分子光谱就变得十分复杂了。

分子中的电子,像原子中的电子一样有四个量子数。但在二原子分子中,电子为两个原子核所共有,因而量子数m

光谱学光谱学

就由一个新的量子数λ来代替了。λ表示电子轨道对于分子轴的取向,它可以为正值也可以为负值,但在数值上不能大于l。在二原子分子中,λ同自旋s的结合很相似于原子中的ls的结合。它们结合在一起的代数和表示电子的总角动量在分子轴上的投影,其数值由Λ表示,Λ=0,1,2,…。相应于Λ的不同的值的电子态分别由大写的希腊字母Σ、∏、Δ、Ф、…表示。分子能态的符号同原子相似为MΛ,M仍等于2S+1。例如H2、N2、HCl等的最低电子态为1Σ,O2的为3Σ,NO的为2∏等。在分子中,电子态的能量比振动态的能量大50~100倍,而振动态的能量比转动态的能量大50~100倍。因此,在分子的电子态之间的跃迁中,总是伴随着振动跃迁和转动跃迁的,因而许多光谱线就密集在一起而形成带状光谱。

从发射光谱的研究中可以得到原子与分子的能级结构的知识,包括有关重要常数的测量。并且原子发射光谱广泛地应用于化学分析中。


推荐
关闭