关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

PCR技术早期的发现与研究历史

2022.10.18

分子生物学技术正以惊人的速度发展,特别是近20年来已经成为生命科学的一个主要的生长点。1976年cDNA克隆技术的建立,使分子生物学更加迅速广泛地渗透到医学各学科,发展了各学科的分子理论基础。1985年Mullis首先描述的多聚酶链反应( PCR, Polymerase Chain Reaction ),使一向昂贵、繁杂、严格的分子生物学试验能够在比较简易、经济的条件下有效的开展,是基因分析技术的一项重大突破。这一技术在很短的时间里即风行全球,不同学科的科学家都蜂拥而上,在近年形成了分子生物学领域的热潮,期望凭借这一工具来提高研究水平,解决所面临的一些难题。

早在四十年以前人们对遗传基因的化学本质并不清楚,后来发现脱氧核糖核酸(DNA)是遗传信息的主要载体。DNA的基础构成单位是核苷,核苷的排列顺序规定遗传密码并形成了基因。DNA是双螺旋结构,以半保留的方式进行复制的(Warson, 1953),1958年Meselson证实了DNA半保留复制模型。60年代对基因表达和调控研究又取得很大进展,从细胞中分离目的基因并在体外克隆和表达受到人们的普遍关注。由于对DNA连接酶及限制性内切酶的合理使用,DNA重组到质粒或噬菌体载体中,在细菌中表达成为70年代基因克隆的最常用技术。Khorana(1971)等提出在体外经DNA变性,与适当引物杂交,再用DNA聚合酶延伸,克隆DNA的设想,由于当时不能合成寡核苷酸及DNA测序等困难而受阻。直到1985年,美国Cetus公司人类遗传研究室的年轻科学家Kary. B. Mullis发明了PCR技术,使Khorana的设想得到实现。Saiki首次描述利用PCR方法扩增人珠蛋白DNA,并用于镰刀状红细胞贫血的产前诊断。

Mullis最初建立的PCR方法使用三种温度的水浴进行实验,所用大肠杆菌DNA聚合酶I的KLENOW片段催化复性引物的延伸,由于该酶不能耐受使DNA变性的高温,所以每一轮反应都需添加新的酶,产量不高且操作繁复,对实验操作要求较高,无法推广使用。1988年Saiki等将耐热DNA聚合酶(Taq)引入了PCR技术。由于Taq酶能够耐受97.5℃加热5-10分钟,因此使DNA变性的94℃加热不使其失活,整个反应只加一次酶即可,并且高温反应也增加了扩增的特异性和效率,易于自动化进行。Mullis因其杰出的贡献,1993年获诺贝尔化学奖。

PCR技术问世以来正以惊人的速度发展,不仅其本身不断地优化改进,许多新型的PCR技术或由PCR衍生的新技术正不断出现。在PCR技术的启发下,诸如转录依赖的扩增系统(TAS)、连接酶链反应(LCR)、自主序列复制系统(3SR)、链替代扩增(SDA)、循环探针反应、等温扩增系统等核酸体外扩增技术不断诞生。当然,目前Mullis发明的经典PCR技术,仍是多数实验室进行核酸体外扩增时的首选和最常用的技术。


推荐
关闭