关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

热裂解GC/MS 技术的优点分析及注意方面

2021.11.16

  高聚物几乎没有什么蒸气压,因而难以想象它能通过GC进行质谱分析。但是,可以通过高温裂解的办法使高聚物裂解为可挥发的小分子,然后导入到 GC/MS系统进行分析。依赖裂解产物的色谱图剖面和色谱图上由各峰的质谱图所确定的产物归属来达到对高聚物的结构测定。实际上,由于热裂解(Py-GC)具有的可重复性,能较好地反映单体特征的裂解谱图,因而成为高分子材料剖析的两大主要工具之一。

  与红外吸收光谱相比,它在分析各种形态的高分子样品,包括鉴定不熔的热固性树脂、鉴别组成相似的均聚物、区分共聚物和共混物等方面是有不可替代的作用。Py-GC与Py-GC/MS相比,显然后者拥有的结构信息量大,因而具有更为广阔的应用前景。图是一张Py一GC/MS的总离子谱图,样品来自一种用于静电复印机碳粉体的高分子树脂,它是苯乙烯和甲基丙烯酸甲酯的共聚物。

  裂解总是与GC/MS在线连接。聚合物在高温下进行裂解,裂解产物被载气导出裂解室后送入GC的进样口,由此进入GC/MS系统。裂解器目前常用的为三种装置,即热丝裂解器、管炉裂解器以及居里点裂解器,各种装置各有利弊。

  但是,从形成有特征性强的裂解谱图,又有高的重复性的角度看,裂解器应当追求如下的主要目标:升温速度快;减缓升温过程中所发生的连续分解;高温区裂解产物的二次反应要小;能快速导入样品和快速将裂解产物导出高温区;使裂解产物的剖面清晰,谱图易于解析;裂解温度的调节和精确控制容易实现,使用方便且易清净;死体积要小于减小裂解产物色谱峰的加宽。

  d7053c77f08ebaa3eb0c4da2b122381.pngGC/MS的实现条件和方法基本上与常规的GC/MS操作相同。色谱柱的选择要考虑到高分子材料的裂解产物的沸点范围较宽、极性变化大等特点,因而色谱柱的工作温度尽可能高且能适应从非极性到中低极性化合物的分析,并具有良好的分离性能。一般推荐聚甲基硅氧烷类作固定相的熔融石英毛细管柱,柱箱的程序升温条件则取决于被分析的高聚物性质,并适当调整升温程序。就Py-GC/MS的实验技术而言,主要在于对裂解技术的要求,它集中在下述三个方面。

  一、裂解温度

  裂解温度过低或者过高都难以形成反映高聚物结构的裂解产物特征谱。这固然要通过实验(一般以500℃开始)去摸索,使样品达到瞬间的完全裂解。当然一般推荐的温度为400~900℃,其中500~600℃是对大多数高分子化合物都比较适宜的最佳温度。有关各类高聚物的最佳裂解温度可以参考拓植新等人的著作。

  二、样品量

  高分子材料本身是热的不良导体,因此如何使样品瞬间受到均匀的加热温度并能发生裂解这是实验中应当注意的问题。GC/MS的检测灵敏度通常在ng数量级,考虑到实验中的分流比,样品量在1~100ug足够了,小于10ug是一般推荐值。过多的量不仅导致一部分样品不能在预定的热解温度下分解,而且因为是非瞬间的气化而留有较多的残渣于裂解室内,影响下一个样品的分析。通常将样品溶解在溶剂中,然后加到样品导入装置中以形成薄膜,这是最为理想。如果高聚物是不溶解的,则需研磨成极细的粉末并均匀铺放。

  三、裂解室的清净

  附在裂解器壁上的碳化物或者影响热的传导或者起催化裂解作用。对于直立式结构的裂解器,还要当心裂解后的残留物跌落在气相色谱进样口的可能。有关清净问题的具体步骤可参考相应的文献。

  热裂解反应是一个相当复杂的过程,即使获得可重复的裂解色谱图,也由于反应的复杂而构成很多的裂解产物峰。尽管它可以得到质谱图的支持,但对于谱图解析来说无疑是冗长和十分困难的。一种裂解同时衍生化技术(Simultaneous Pyrolysis Derivatization,SPD)解决上述问题的有效途径之一。与常规的Py-GC/MS相比,具有性速、灵敏、谱图简洁、特征性强的优点。将衍生化方法直接与Py同时实施,其优点为省却了冗长的衍生化过程和样品的后处理;裂解产物直接导入GC/MS的入口系统有效地提高了样品的利用率;产生的衍生物具有高聚物结构特征的离子使谱图解析更为直观。


推荐
关闭