关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

具有实时跟踪功能的忆阻视觉传感器架构(四)

2020.10.26

  因此,当Vmax试图快速触达VS过程中,Vmin也在做同样的事情,只不过速度较慢。这里,灰色区域快速变大。在若干个帧后,两个阈压限制VS,吸收全部信号变化,这样不会再产生任何热像素。从此,灰色区域恢复窄状和最大像素敏感度。

具有实时跟踪功能的忆阻视觉传感器架构

  图6:利用内部三个忆阻器执行动态背景提取的像素示意图

  IV. 像素实现

  可以用两个理想的低通滤波器来实现等式(10)-(13)。如图5所示,LPF1实现等式(10)和(11),LPF2实现等式(12)和(13)。假设理想二极管D1-D4(无电压降),且RL > RH, 每个模块实现两个不同的一阶阻容滤波器,TH = RHC,且TL = RLC, 其中RH >> RL。监视场景中的事件需要从几秒到几十秒的大范围时间常数滤波器,这意味R和C应该分别是兆欧和微法量级的电阻器和电容器。每个模块(LPF1, LPF2)都必须能够从一个时间常数切换到另一个时间常数,从而取得自适应算法所需的行为特性。为取得一个高效的视觉传感器架构,这种双边峰值检测和滤波操作必须在像素附近的位置完成。为此,有些人提出定制CMOS传感器解决方案,使用开关电容器技术模拟每个像素里面的两个滤波器。不过,这种设计方法有以下两个缺点:(a) 两个阈压值在模拟存储器内的保留时间达不到应用的求;(b)充当模拟存储单元的电容器占用的芯片面积过大,影响像素间距变小。为解决这些主要问题,我们探讨能否用一个忆阻器代替滤波器的部分功能,发挥其非易失性存储和纳米级尺度的优势。此外,通过数字脉冲(电压或电流)信号很容易控制忆阻器的电阻,按照图4的工作原理,我们的像素解决方案依靠三个忆阻器(MS, Mmax,Mmin)保存与信号VS成正比的电阻值和两个阈压Vmax和Vmin。像素解决方案的原理示意图如图6所示。光频转换器 (L2F)模块将留在像素上的光强转换成固定脉宽(△T)且频率与光生电流(Iph)成正比的数字脉冲,在像素复位过程中,MS电阻值置于最高值(MSL = ROFF ),等待L2F数字脉冲设置电阻值。

具有实时跟踪功能的忆阻视觉传感器架构

  图7:像素在积分时间(Ti)内的时序图,L2F将n个数字电流脉冲I1馈入MS,使忆阻器电阻在Roff至R(n)范围内变化

具有实时跟踪功能的忆阻视觉传感器架构

  图8:与像素的四个不同状态有关(max,min)的忆阻器控制: LL,HL,LH,HH

具有实时跟踪功能的忆阻视觉传感器架构

  图9:在每个更新脉冲 (PLS)后,通过忆阻器电阻值(Mmax, Mmin)表达两个阈压在每个像素状态(表I所列像素状态: S1, S2, S3, S4)的预计行为。S1、S2和S3是发生在传感器工作期间的典型状态,而S4则发生在传感器校准阶段,是专门生成的信号。


推荐
热点排行
一周推荐
关闭