关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

细胞组织消化常用的几种酶的选择

2021.3.02

直接从生物体获取的组织,一般需要将其消化成单个细胞才能进行体外培养。这种直接从离体组织获得的细胞,更接近于生物体内的生活状态,且生物性状尚未发生很大改变,因此在药物筛选、细胞移植、类器官培养、肿瘤研究等众多领域备受欢迎。但组织消化过程中常遇到多种问题,例如消化不完全、细胞死亡率高等。如何克服这些问题,其实消化酶的选择是关键。
本文将为您介绍一些常用的消化酶及其适用组织,并为您罗列多种正常和肿瘤组织消化方案,供您参考。

来了解组织消化过程中常用的酶吧~

1.胰蛋白酶 
胰蛋白酶(Trypsin)是目前应用最广泛的消化试剂,通过作用于与赖氨酸或精氨酸相连接的肽腱,除去细胞间粘蛋白及糖蛋白,影响细胞骨架,从而使细胞分离。胰蛋白酶适用于消化细胞间质较少的软组织,如胚胎、上皮、肝、肾等组织。但对于纤维组织和较硬的癌组织的效果差,常常将胰蛋白酶与其他消化酶联合使用。EDTA可以用来增强胰蛋白酶的水解功能,而血清则会影响胰蛋白酶的活性。

2.胶原酶 
胶原酶(Collagenase)通过水解细胞间质的脯氨酸,从而使细胞离散。胶原酶对胶原的消化作用很强,它仅对细胞间质有消化作用而对细胞损害不大,因此适于消化分离纤维性组织和较硬的癌组织。钙镁离子和血清不会对胶原酶的活性及消化作用产生影响。
胶原酶可细分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ型胶原酶,不同类型胶原酶适用范围不同(详见下表)。

胶原酶类型及适用范围表

3.透明质酸酶 
透明质酸酶(Hyaluronidase)通过随机降解透明质酸的β-N-乙酰己糖胺-[1-4]糖苷键,从而降低透明质酸的活性,常与胶原酶等联合使用,用于结缔组织的分离。

4.脱氧核糖核酸酶Ⅰ
脱氧核糖核酸酶Ⅰ(DeoxyribonucleaseⅠ, DNaseⅠ)作用于细胞分离降解出的DNA,防止DNA导致的细胞凝集,对细胞完整性无破坏作用。通常配合胶原酶或透明质酸酶等联合使用,不会单独使用。

5.中性蛋白酶  
中性蛋白酶(Dispase)具有温和的蛋白酶水解活性,不会损坏细胞膜的完整性,常与胶原酶等联合使用,其分离纤维样组织的效率高于上皮组织。

6.弹性蛋白酶  
弹性蛋白酶(Elastase)通过作用于弹性蛋白的肽键、酰胺键和酯键将其水解,常与胰蛋白酶和胶原酶等联合使用,用于分离结缔组织和含有大量细胞网状纤维的组织。

还有消化方案供您参考~
不同组织消化方案有所不同,同种组织的消化方案也不尽相同,考虑到组织的特殊性及酶的多样性,针对具体组织仍需试验摸索以确定最佳消化方案。以下列表方法供大家参考。

表一:正常组织消化用酶列表
表二:肿瘤组织消化用酶列表

参考文献 


1. Kasai-Brunswick TH., et al., (2017) Cardiosphere-derived Cells Do Not Improve Cardiac Function in Rats With Cardiac Failure. Stem Cell Res Ther. Feb 15;8(1):36.
2. Huch.M., et al., (2015) Long-term Culture of Genome-Stable Bipotent Stem Cells From Adult Human Liver. Cell. Jan 15;160(1-2):299-312.
3. Holt PG., et al., (1986) Extraction of Immune and Inflammatory Cells From Human Lung Parenchyma: Evaluation of an Enzymatic Digestion Procedure.  Clin Exp Immunol. Oct;66(1):188-200.
4. Campbell AM., et al., (1993) Modulation of Eicosanoid and Histamine Release From Human Dispersed Lung Cells by Terfenadine. Allergy. Feb;48(2):125-9.
5. Sanchez-Romero N., et al., (2020) A Simple Method for the Isolation and Detailed Characterization of Primary Human Proximal Tubule Cells for Renal Replacement Therapy. Int J Artif Organs. Jan;43(1):45-57.
6. Ataollahi F., et al., (2014) New Method for the Isolation of Endothelial Cells From Large Vessels. Cytotherapy. Aug;16(8):1145-52.
7. Leelatian N., et al., (2017) Single cell analysis of human tissues and solid tumors with mass cytometry. Cytometry B Clin Cytom. Jan;92(1):68-78.
8. Roberts EG., et al., (2019) Evaluation of Placental Mesenchymal Stem Cell Sheets for Myocardial Repair and Regeneration. Tissue Eng Part A Jun;25(11-12):867-877.
9. Jankovic-Karasoulos T., et al., (2018) Isolation of villous cytotrophoblasts from second trimester human placentas.
Placenta. Dec 15;74:55-58.
10. Tang YL., et al., (2007) A Novel Two-Step Procedure to Expand Cardiac Sca-1+ Cells Clonally. Biochem Biophys Res Commun. Aug 10;359(4):877-83.
11. Meyer J. ., et al., (2016) An optimized method for mouse liver sinusoidal endothelial cell isolation.
Exp Cell Res. Dec 10;349(2):291-301.
12. Nakano H., et al., 1799 (2018) Isolation and Purification of Epithelial and Endothelial Cells from Mouse Lung. Methods Mol Biol.:59-69.
13. Jain R. ., et al., (2014) Isolation of thymic epithelial cells and analysis by flow cytometry. Curr Protoc Immunol. Nov 3;107:3.26.1-3.26.15.
14. Tran LS., et al., (2018) Isolation of Mouse Primary Gastric Epithelial Cells to Investigate the Mechanisms of Helicobacter Pylori Associated Disease. Methods Mol Biol. 1725:119-126.
15. De Clercq K., et al., (2017) Isolation of Mouse Endometrial Epithelial and Stromal Cells for In Vitro Decidualization. J Vis Exp Mar 2;(121):55168.
16. Sharon, Y., et al., (2013) Isolation of Normal and Cancer-Associated Fibroblasts from Fresh Tissues by Fluorescence Activated Cell Sorting (FACS). J Vis Exp 71, e4425.
17. Zhang Q., et al., (2016) Isolation and Culture of Single Cell Types from Rat Liver. Cells Tissues Organs. 201(4):253-67.
18. Al-Eisa A., (2017) IgA Enhances IGF-1 Mitogenic Activity Via Receptor Modulation in Glomerular Mesangial Cells: Implications for IgA-Induced Nephropathy. Kidney Blood Press Res.;42(3):391-397. 
19. Githens  S., et al., (1994) Isolation and Culture of Rhesus Monkey Pancreatic Ductules and Ductule-Like Epithelium Pancreas. Jan;9(1):20-31.
20. Caperna TJ., et al., (2011) Culture of porcine hepatocytes or bile duct epithelial cells by inductive serum-free media In Vitro Cell Dev Biol Anim. Mar;47(3):218-33.
21. Ataollahi F., et al., (2014) New method for the isolation of endothelial cells from large vessels. Cytotherapy. Aug;16(8):1145-52.
22. Widowati W., et al., (2018) Isolation, Characterization and Proliferation of Cancer Cells from Breast Cancer Patients. Acta Inform Med. Dec;26(4):240-244. 
23. Beaupain R., et al., (1993) “Normal” breast cells adjacent to a tumor grown in long-term three-dimensional culture. In Vitro Cellular & Developmental Biology – Plant, 29(2): 100-104.
24. Leung C K., et al., (1982) Morphological and proliferative characteristics of human breast tumor cells cultured on plastic and in collagen matrix. In Vitro Cellular & Developmental Biology – Plant, 18(5): 476-482.
25. Chou J., et al., (2013) Phenotypic and Transcriptional Fidelity of Patient-Derived Colon Cancer Xenografts in Immune-Deficient Mice. PLOS ONE, 8(11).
26. Friedman E., et al., (1981) Tissue culture of human epithelial cells from benign colonic tumors. In Vitro Cellular & Developmental Biology – Plant, 17(7): 632-644.
27. Brattain M G., et al., (1983) Characterization of human colon carcinoma cell lines isolated from a single primary tumour. British Journal of Cancer, 47(3): 373-381.
28. Quatromoni J G., et al., (2015) An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells. Journal of Leukocyte Biology, 97(1): 201-209.
29. Zhuang X., et al., (2015) Identification of novel vascular targets in lung cancer Br J Cancer. Feb 3; 112(3): 485–494.
30. Welte Y., et al., (2013) Patient Derived Cell Culture and Isolation of CD133+ Putative Cancer Stem Cells from Melanoma. Journal of Visualized Experiments.
31. Tillotson LG., et al., (2001) Isolation, Maintenance, and Characterization of Human Pancreatic Islet Tumor Cells Expressing Vasoactive Intestinal Peptide Pancreas. Jan;22(1):91-8.
32. Nakashiro K., et al., (2004) Phenotypic Switch from Paracrine to Autocrine Role of Hepatocyte Growth Factor in an Androgen-Independent Human Prostatic Carcinoma Cell Line, CWR22R. American Journal of Pathology, 165(2): 533-540.
33. Sheela S., et al., (1990) Angiogenic and invasive properties of neurofibroma Schwann cells. Journal of Cell Biology, 111(2): 645-653.
34. Sacks P G., et al., (1988) Establishment and characterization of two new squamous cell carcinoma cell lines derived from tumors of the head and neck. Cancer Research, 48(10): 2858-2866.
35. Kim M P., et al., (2009) Orthotopic and heterotopic generation of murine pancreatic cancer xenografts [J]. Nature Protocols, 4(11): 1670-1680.
36. Rasheed Z A., et al., (2010) Isolation of Stem Cells from Human Pancreatic Cancer Xenografts. Journal of Visualized Experiments.
37. Vaughan A E., et al., (2011) Lung Cancer in Mice Induced by the Jaagsiekte Sheep Retrovirus Envelope Protein Is Not Maintained by Rare Cancer Stem Cells, but Tumorigenicity Does Correlate with Wnt Pathway Activation. Molecular Cancer Research, 10(1): 86-95.
38. Liu X., et al., (2013) Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy. Scientific Reports , 3(1): 2473-2473.
39. Kazerounian S., et al., (2013) RhoB differentially controls Akt function in tumor cells and stromal endothelial cells during breast tumorigenesis. Cancer Research, 73(1): 50-61.
40. Mazzoleni S., et al., (2013) Gene Signatures Distinguish Stage-Specific Prostate Cancer Stem Cells Isolated From Transgenic Adenocarcinoma of the Mouse Prostate Lesions and Predict the Malignancy of Human Tumors. Stem Cells Translational Medicine, 2(9): 678-689.
41. Duarte S., et al., (2013) Preventive Cancer Stem Cell‐Based Vaccination Reduces Liver Metastasis Development in a Rat Colon Carcinoma Syngeneic Model. Stem Cells, 31(3): 423-432.
42. Gazdar A F., et al., (1980) Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proceedings of the National Academy of Sciences of the United States of America, 77(6): 3519-3523.
43. Sharma N K., et al., (1999) A Novel Immunological Model for the Study of Prostate Cancer. Cancer Research, 59(10): 2271-2276.


推荐
关闭