这项研究中,研究人员采用了幼年阶段的临床前模型进行研究,而这一时期是大脑学习和记忆的关键时期;他们利用双光子显微镜中的先进技术来模拟两个神经元之间的突触接触,从而就发现了一种与树突棘所接收的信息排列相关的重要规律。研究结果表明,根据所接收到的输入信息的数量及其接近程度,这些信息就会以不同的方式进行储存;研究者表示,作为其它神经元信息输入的主要接受者,树突棘的结构和功能往往对神经变性疾病的发生直接相关,比如脆性X染色体综合征或自闭症等,因为患者无法适当地进行信息的加工和储存,这或许就会破坏患者大脑记忆构建的逻辑,如今,通过理解树突棘动态学背后的分子机制,以及其如何影响神经系统的功能,研究人员就能开发出更好的适应性治疗手段。

  【1】Sabrina Tazerart, Diana E Mitchell, Soledad Miranda-Rottmann, et al. A spike-timing-dependent plasticity rule for dendritic spines, Nat Commun. 2020 Aug 26;11(1):4276. doi:10.1038/s41467-020-17861-7.