关注公众号

关注公众号

手机扫码查看

手机查看

喜欢作者

打赏方式

微信支付微信支付
支付宝支付支付宝支付
×

激光测距传感器的原理及应用(二)

2020.10.26

如今,激光雷达系统有2个主要发展方向,红外激光雷达系统加上微电机械系统(MEMS Micro-Electro-Mechanical System)(配上转动的激光发射器),或者采用固定状态的激光雷达系统。

在简要地讨论这些技术的区别以前,需要对接收系统解释一下。

接收系统的主要功能是识别从发射器发出的和从物体上反射的光束。因此探测器需要非常灵敏,以至能够探测到单个的光子。如今,最新的相关设备采用了SPAD(Single-Photon Avalanche Diode单光子雪崩二极管) 技术。

该技术的原理很简单,如图11所示。这个二极管有特殊的偏移PN结结构,所以单个的光子就能在二极管内造成雪崩电流(由一点小电流引发的大量电流,类似雪崩现象,故名)。快速增大的二极管电流会被相应的电路探测到,然后产生数字信号,用于后期处理。

图12显示的是采用SPAD传感器测量距离的工作原理。在时间为X时,激光发射器发出一个脉冲光信号,这一信号会被物体反射回来,经过Y时间后一个(或更多)光子到达传感器,到该物体间的距离可以从光线传播的时间长短计算出来。

如果一束或多束光线从转动的镜面或微型机械系统中发射出来,而又有一个由数个传感器元件组成的阵列,那么三维立体的物体也能被探测出来。图13和14就展示了两种基本的激光探测系统的测量过程。

当采用基于MEMS技术的微型镜面系统时,单一束的激光信号会以线形形式被发散和反射回来,反射的光子被相对应的SPAD元件中的光敏传感器检测到。这对于镜面系统准确性、工作寿命、可调节度和可靠性有非常高的要求。毕竟这是一个内部带有可动部件的系统。

乍一看上去,一个没有可动零件的系统似乎更容易实现。但在这一系统中,需要数个(超过100个)激光二极管以及一个相对较大的接收器阵列。激光二极管必须能发出脉冲宽度在毫微秒级上的、电流达数个安培的信号能力,这对半导体制造商是很大的挑战。

两种系统都还在开发中。从一个半导体制造商的角度上来看,系统所需的半导体元件在技术上是可行的,但是SPAD阵列所需的空间面积不好实现。要想激活和控制激光二极管阵列,并实现大约100美元的目标成本,则需要新的方法。相应的微电机械系统也正在研发当中。


推荐
热点排行
一周推荐
关闭