在前期研究中,该课题组设计合成了喹啉螺旋基元及其低聚物,并发现喹啉酰胺低聚物通过分子内氢键自组装形成单螺旋、双螺旋和四束螺旋超分子聚集体结构,晶体结构揭示这些螺旋折叠体具有一个纳米螺旋空腔。在此基础上,研究人员螺旋空腔两端引入不同的螺旋基元分别构筑了具有封闭空腔的单螺旋和双螺旋分子胶囊,该螺旋分子胶囊与不同链长的烷基二元醇形成主客体超分子络合物。相关研究结果分别发表在Angew.
Chem. Int. Ed. 2008, 47, 1715;Angew. Chem. Int. Ed. 2008, 47, 4153 (DOI:10.1038/
nchem.9);Chem. Eur. J. 2009, 15, 11530;ChemComm. 2010, 46 (2),
297。这些成果为设计轮烷类分子机器奠定了坚实的基础。

  在经典的轮烷分子机器中,环状分子必须通过不可逆的方式固定在线型客体分子上,因此在合成这类分子机器时面临很大困难和挑战。为了突破这些制约,研究人员采用了动态自组装方法使螺旋分子很慢地缠绕到线型客体分子上,一旦形成螺旋-线型分子主客体络合物后,螺旋分子就能够在线型分子上快速运动而不发生离解。在主客体络合物形成过程中螺旋分子发生解折叠和再折叠,同时螺旋分子的长度必须和线型分子的络合点严格匹配,但是不要求二者间的不可逆固定,这是与经典的轮烷分子机器的显著不同,也是合成该类分子机器的最大优势。研究人员利用质子化和去质子化,实现了对螺旋分子运动的调控。