这好像是违反直觉的,一根更细的纳米线能产生比更粗的线更高的流动性。但研究人员解释说,在块状硅中,形成电流的空穴能量分布很宽,量子限制效应限制了空穴,形成了更加一致的能量排列,从而提高了导线中的载荷子迁移率。在细纳米线中,由于空穴能量分布更窄,反而提高了流动性和电流强度。当与构造类似的纳米带(只在厚度维度进行限制)相比时,细纳米线也显出隧道的量子限制程度提高,能产生更高的载荷子迁移率。

  纳米线晶体管技术主要用于制造廉价且超灵敏的生物传感器,其灵敏度将随纳米线直径的减小而增加。“我们计划用这种型号的微细纳米线晶体管来开发蛋白质生物感测器。”沃尔特·胡说,小直径纳米线依靠本身优势,可在生物感测方面发挥重要作用,有望开发出最终达到一个单分子的灵敏感测仪器,而且信噪比更好。

  除了生物感测器,新型高性能晶体管还在互补金属氧化物半导体缩微技术(CMOS,一种集成电路材料微型化)上有极大潜力,目前该领域的发展已经接近极限,变得越来越难。沃尔特·胡认为,硅材料在纳米电子设备领域仍具有很多潜能。硅纳米线晶体管的性能随着直径减小而增强,将细微纳米线晶体管排成阵列,无需新的工艺技术就能制造出高性能产品。新型纳米线晶体管在把CMOS缩小到纳米级别时甚至能简化目前的工序,并不需要用高掺杂的补充质结作为源漏。